Lecture 20
 3HIRGF\&\&RMMXHE) UFWRQV4 XDGDWET, UDWRQDOWH

Review: $x=\left[a_{0}, a_{1}, \ldots\right], x_{0}=x, a_{0}=x_{0}$, write $x=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2} \ldots}} \Rightarrow a_{1}=\frac{1}{x-a_{0}}$, at any point $x_{n}=\left[a_{n}, a_{n+1}, \ldots\right], x=x_{0}=\left[a_{0}, a_{1}, \ldots a_{n-1}, x_{n}\right]$, convergents $\frac{p_{n}}{q_{n}}=\left[a_{0}, a_{1}, \ldots a_{n}\right] . x$ is rational if and only if continued fraction is finite (terminates), and is quadratic irrational (ie., satisfies some quadratic equation) if and only if continued fraction is periodic.

Continuing proof (from last lecture). Proving that if x is a quadratic irrational, then continued fraction is periodic

Step 0:

$$
x=\frac{a+\sqrt{b}}{c} \Rightarrow \frac{B_{0}+\sqrt{d}}{C_{0}}
$$

with B_{0}, C_{0}, d integers, $d>0, C \mid d-B_{0}^{2}$

Step 1: Defined B_{i}, C_{i} by induction. $x_{0}=x, a_{i}=\left\lfloor x_{i}\right\rfloor, x_{i}=\frac{B_{i}+\sqrt{d}}{C_{i}}$ defines B_{i}, C_{i} uniquely. $x_{i+1}=\frac{1}{x_{i}-a_{i}} \Rightarrow B_{i+1}=a_{i} C_{i}-B_{i}, C_{i+1}=\frac{d-B_{i+1}^{2}}{C_{i}}$, with $B_{i}, C_{i} \in \mathbb{Q}$.

Strategy: show all B_{i}, C_{i} are integers, then show are bounded, therefore repeat.

Step 2: By induction show B_{i}, C_{i} are integers and that $C_{i} \mid d-B_{i}^{2}$. For $i=0 \mathrm{it}^{\prime}$ s obvious, as $B_{0}, C_{0} \in \mathbb{Z}, C_{0} \mid d-B_{0}^{2}$ by step 0 . Easy to see that B_{i+1} is integer.

$$
\begin{aligned}
C_{i+1} & =\frac{d-B_{i+1}^{2}}{C_{i}} \\
& =\frac{d-\left(a_{i} C_{i}-B_{i}\right)^{2}}{C_{i}} \\
& =\frac{d-B_{i}^{2}-a_{i}^{2} C_{i}^{2}+2 a_{i} C_{i} B_{i}}{C_{i}} \\
& =\frac{d-B_{i}^{2}}{C_{i}}-a_{i}^{2} C_{i}+2 a_{i} B_{i} \in \mathbb{Z}
\end{aligned}
$$

Finally show that $C_{i+1} \mid d-B_{i+1}^{2}$ since $\frac{d-B_{i+1}^{2}}{C_{i+1}}=C_{i}$ is an integer.

Step 3: Check that $x_{i}=\frac{B_{i}+\sqrt{d}}{C_{i}}$ by induction. True for $i=0, x_{0}=\frac{B_{0}+\sqrt{d}}{C_{0}}$. For
x_{i+1},

$$
\begin{aligned}
x_{i+1} & =\frac{1}{x_{i}-a_{i}} \\
& =\frac{1}{\frac{B_{i}+\sqrt{d}}{C_{i}}-a_{i}} \\
& =\frac{C_{i}}{\sqrt{d}-\left(a_{i} C_{i}-B_{i}\right)} \\
& =\frac{C_{i}}{\sqrt{d}-B_{i+1}} \\
& =\frac{C_{i}\left(\sqrt{d}+B_{i+1}\right)}{d-B_{i+1}^{2}} \\
& =\frac{\sqrt{d}+B_{i+1}}{C_{i+1}}
\end{aligned}
$$

Step 4: Need to bound B_{i}, C_{i}. Let $y_{i}=\frac{B_{i}-\sqrt{d}}{C_{i}}$ be $\overline{x_{i}}$. We have $x=x_{0}=$ $\frac{x_{n} p_{n-1}+p_{n-2}}{x_{n} q_{n-1}+q_{n-2}}$ where $\left\{\frac{p_{n}}{q_{n}}\right\}$ are convergents to x. If we replace \sqrt{d} by $-\sqrt{d}$ we get that $y_{0}=\frac{y_{n} p_{n-1}+p_{n-2}}{y_{n} q_{n-1}+q_{n-2}}$. Solve for y_{n}

$$
y_{n}=\frac{-\left(q_{n-2} y_{0}-p_{n_{2}}\right)}{q_{n-1} y_{0}-p_{n-1}}=-\frac{q_{n-2}}{q_{n-1}}\left(\frac{y_{0}-\frac{p_{n-2}}{q_{n-2}}}{y_{0}-\frac{p_{n-1}}{q_{n-1}}}\right)
$$

Now let $n \rightarrow \infty$, we get $-\frac{q_{n-2}}{q_{n-1}}\left(\frac{y_{0}-x_{0}}{y_{0}-x_{0}}\right)$, so for sufficiently large n the expression for y_{n} is negative.

Given $y_{n}=\frac{B_{i}-\sqrt{d}}{C_{i}}, x_{n}-y_{n}$ is positive, $x_{n}-y_{n}=\frac{2 \sqrt{d}}{C_{n}}>0$, then $C_{n}>0$ for large enough n. Then $1 \leq C_{n} \leq C_{n} C_{n+1}=d-B_{n+1}^{2} \leq d$, so C_{n} is bounded for large n (hence for all n). Also, $B_{n+1}^{2}<B_{n+1}^{2}+C_{n} C_{n+1}=d$, so $\left|B_{n+1}\right|<\sqrt{d}$ for large enough n, and so B_{n} is also bounded.

Step 5: There are only finitely many possibilities for $\left(B_{n}, C_{n}\right)$, so there must be
two natural numbers n and $n+k$ such that $\left(B_{n}, C_{n}\right)=\left(B_{n+k}, C_{n+k}\right)$. Then

$$
\begin{aligned}
x_{n} & =\frac{B_{n}+\sqrt{d}}{C_{n}} \\
& =\frac{B_{n+k}+\sqrt{d}}{C_{n+k}} \\
& =x_{n+k} \\
\Rightarrow a_{n} & =\left\lfloor x_{n}\right\rfloor \\
& =\left\lfloor x_{n+k}\right\rfloor \\
& =a_{n+k} \\
\Rightarrow B_{n+1} & =a_{n} C_{n}-B_{n} \\
& =a_{n+k} C_{n+k}-B_{n+k} \\
& =B_{n+k+1} \\
\Rightarrow C_{n+1} & =\frac{d-B_{n+1}^{2}}{C_{n}} \\
& =\frac{d-B_{n+k+1}^{2}}{C_{n+k}} \\
& =C_{n+k+1}
\end{aligned}
$$

So $\left(B_{n+1}, C_{n+1}\right)=\left(B_{n+k+1}, C_{n+k+1}\right)$, and so on, and so the representation $x_{0}=x=\left[a_{0}, \ldots a_{n-1}, \overline{a_{n}, a_{n+1}, \ldots a_{n+k-1}}\right]$ is periodic.
Next, we want to understand what the continued fraction for \sqrt{d} looks like for $d>0$ not a square. One reason is to solve the Pell-Brahmagupta Equation, which is the diophantine equation $x^{2}-d y^{2}=1$ for $x, y \in \mathbb{Z}$. If (x, y) is a positive solution to the P-B equation, then $(x+\sqrt{d} y)(x-\sqrt{d} y)=1$, so since $x>\sqrt{d} y$,

$$
\begin{aligned}
|x-\sqrt{d} y| & =\frac{1}{|x+\sqrt{d} y|} \\
\Rightarrow\left|\sqrt{d}-\frac{x}{y}\right| & =\frac{1}{y(x+\sqrt{d} y)}<\frac{1}{y(2 \sqrt{d} y)}
\end{aligned}
$$

$\Rightarrow \frac{x}{y}$ is an approximation to \sqrt{d}, which is at least as good as $\frac{1}{2 \sqrt{d} y^{2}}$. If some $\frac{p}{q}$ approximates irrational α with error $\leq \frac{1}{2 q^{2}}$ then it must be a convergent to α [proved in PSet 9], so all solutions to P-B equation must come from convergents $\frac{x}{y}$ of \sqrt{d}.

Theorem 71. Let x be a quadratic irrational, and \bar{x} be its conjugate (ie., if $x=\frac{a+b \sqrt{d}}{c}$ with $a, b, c, d \in \mathbb{Z}$, then $\bar{x}=\frac{a-b \sqrt{d}}{c}$). The continued fraction of x is purely periodic (ie., $\left[\overline{a_{0}, a_{1}, \ldots a_{n-1}}\right]$) if and only if ${ }^{c} x>1$ and $-1<\bar{x}<0$.

Proof-Part 1. First suppose $x>1$ and $-1<\bar{x}<0$. We know that continued
fraction for x will repeat at some point, ie., there's an n-digit block that repeats and a "start point" m such that

$$
x=\left[a_{0}, a_{1}, \ldots a_{m-1}, \overline{a_{m}}, a_{m+1}, \ldots a_{m+n-1}\right]
$$

Want to show that we can take $m=0$. We'll do this by downward induction ie., by "advancing" m. We'll show that $a_{m-1}=a_{m-1+n}$.

We know that $a_{i} \geq 1$ for all i. So rewrite $x_{i+1}=\frac{1}{x_{i}-a_{i}}$ as $\frac{1}{x_{i+1}}=x_{i}-a_{i}$. Take conjugate

$$
\frac{1}{\overline{x_{i+1}}}=\overline{x_{i}}-a_{i}
$$

Now by induction, we'll show that $-1<\overline{x_{i}}<0$. For $i=0$ this is by hypothesis. If we know for i then $\overline{x_{i}}-a_{i}<-1$, since $\overline{x_{i}}<0$ and $a_{i}>1$, and so $\frac{1}{\overline{x_{i+1}}}<-1$ which forces $-1<\overline{x_{i+1}}<0$, which completes the induction.

Then, since

$$
-a_{i}-\frac{1}{\overline{x_{i+1}}}=-\overline{x_{i}} \in(0,1)
$$

we have $-\frac{1}{\overline{x_{i+1}}} \in\left(a_{i}, a_{i}+1\right)$ and $\left\lfloor-\frac{1}{\overline{x_{i+1}}}\right\rfloor=a_{i}$. Now we know that $a_{m+k}=$ a_{m+k+n} for all $k \geq 0$.

$$
x_{m}=\left[a_{m}, a_{m+1}, \ldots\right]=\left[a_{m+n}, a_{m+n+1}, \ldots\right]=x_{m+n}
$$

so $\overline{x_{m}}=\overline{x_{m+n}}$.

$$
a_{m-1}=\left\lfloor-\frac{1}{\overline{x_{m}}}\right\rfloor=\left\lfloor-\frac{1}{\overline{x_{m+n}}}\right\rfloor=a_{m+n-1}
$$

therefore we can take $m=0$, and so x is purely periodic.
Proof. Suppose x is purely periodic, $x=\left[\overline{a_{0}, a_{1}, \ldots a_{n-1}}\right]$. Want to show that $x>1$ and $-1<\bar{x}<0$. For any $x, a_{0}=a_{n}>1 \Rightarrow x>1$. So let's assume that $n \geq 4$ (can always take larger blocks if not). Now

$$
\begin{gathered}
x=\left[a_{0}, a_{1}, \ldots a_{n-1}, x\right]=\frac{p_{n-1} x+p_{n-2}}{q_{n-1} x+q_{n-2}} \\
\Rightarrow q_{n-1} x^{2}+\left(q_{n-2}-p_{n-1}\right) x-p_{n-2}=0=f(x)
\end{gathered}
$$

\bar{x} is the other root. We know that $x>1$, so it's enough to show that $f(x)$ has a root between -1 and 0 . Do this by showing that $f(0)$ and $f(-1)$ have opposite signs.

$$
\begin{aligned}
f(0) & =-p_{n-2}<0 \\
f(-1) & =q_{n-1}-q_{n-2}+p_{n-1}-p_{n-2} \\
& =\left(a_{n-1}-1\right) q_{n-2}+q_{n-3}+\left(a_{n-1}-1\right) p_{n-2}+p_{n-3}>0
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.781 Theory of Numbers

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

