
Lecture 20
Periodic Continued Fractions, Quadratic Irrationalities

Review: x = [a0, a1, . . . ], x0 = x, a0 = x0, write x = a0 + 1 a
a1+

1
a ...2

⇒ 1 = 1
x−a0 ,

at any point xn = [an, an+1, . . . ], x = x0 = [a0, a1, . . . an 1, xn], convergents
pn

−
= [a0, a1, . . . an] xqn

. is rational if and only if continued fraction is finite
(terminates), and is quadratic irrational (ie., satisfies some quadratic equation)
if and only if continued fraction is periodic.

Continuing proof (from last lecture). Proving that if x is a quadratic irrational,
then continued fraction is periodic

Step 0:
a+
√
b B

x =
c

⇒ 0 +
√
d

C0

with B0, C0, d integers, d > 0, C|d−B2
0

√
Step 1: Defined Bi, Ci by induction. x0 = x, a , B

i = bx c xi = i+ d
i Ci

defines
2

B 1
i, Ci uniquely. xi+1 = xi−ai ⇒

d B
B i+1
i+1 = aiCi − Bi, Ci+1 =

−
Ci

, with
Bi, Ci ∈ Q.

Strategy: show all Bi, Ci are integers, then show are bounded, therefore repeat.

Step 2: By induction show Bi, Ci are integers and that Ci|d−B2
i . For i = 0 it’s

obvious, as B0, C
2

0 ∈ Z, C0|d−B0 by step 0. Easy to see that Bi+1 is integer.

d B2

Ci+1 =
− i+1

Ci
d

=
− (aiCi −Bi)2

Ci
d−B2

i − a2iC2
i + 2aiCiBi

=
Ci

d
=
−B2

i

Ci
− a2iCi + 2aiBi ∈ Z

Finally show that d B2

C i
+1|d−B2

i+1 since − +1
i = CiCi+1

is an integer.

Step 3: Check that x = Bi+
√
d

i Ci
by induction. True for i = 0, x0 = B0+

√
d

C0
. For

1



xi+1,

1
xi+1 =

xi − ai
1

=
Bi+
√
d

Ci
− ai
Ci

= √
d− (aiCi −Bi)
Ci

= √
d−Bi+1

Ci(
√
d+Bi+1)

=
d−B2

√ i+1

d+Bi+1
=

Ci+1

√
Step 4: Need to bound Bi, Ci. Let yi = Bi− d be xi. We have x = x0 =Ci
xnpn−1+pn−2 where {pn } are convergents to x. If we replace

√
d by

√
− dxnqn 1+qn 2 q− − n

we get

that y p +py n
0 = n−1 n−2 ynynqn 1+qn

.
−2

Solve for
−

p
− n

(q y −2

n 2y0
=

− pn2
) q

yn
− − n

=
− 02

−

(
− qn−2

− pqn−1y0 pn 1 q− n−1 y n−1
0 qn−1

)

Now let n→∞, we get− qn−2

(
y0−x0

qn 1 y0 x0

)
, so for sufficiently large n the expression

− −
for yn is negative.

Given y Bi
√
d 2

√
d

n = − x
i

, n − yn is positive, xn − yn = > 0C Cn
, then Cn > 0 for

large enough n. Then 1 ≤ Cn ≤ CnCn+1 = d−B2
n+1

2

≤ d, so Cn is bounded for
large n (hence for all n). Also, Bn+1 < B2

n+1 + CnCn+1 = d, so |Bn+1| <
√
d for

large enough n, and so Bn is also bounded.

Step 5: There are only finitely many possibilities for (Bn, Cn), so there must be

2



two natural numbers n and n+ k such that (Bn, Cn) = (Bn+k, Cn+k). Then

Bn +
√
d

xn =
Cn

Bn+k +
√
d

=
Cn+k

= xn+k

⇒ an = bxnc
= bxn+kc
= an+k

⇒ Bn+1 = anCn −Bn
= an+kCn+k −Bn+k
= Bn+k+1

d
⇒ Cn+1 =

−B2
n+1

Cn
d

=
−B2

n+k+1

Cn+k

= Cn+k+1

So (Bn+1, Cn+1) = (Bn+k+1, Cn+k+1), and so on, and so the representation
x0 = x = [a0, . . . an 1, an, an+1, . . . an+k periodic.−1] is−

Next, we want to understand what the continued fraction for
√
d looks like

for d > 0 not a square. One reason is to solve the Pell-Brahmagupta Equation,
which is the diophantine equation x2−dy2 = 1 for x, y ∈ Z. If (x, y) is a positive
solution to the P-B equation, then (x+

√
dy)(x

√
− dy) = 1, so since x >

√
dy,

|x
√ 1− dy| =∣ x+

√
| dy|

⇒
∣∣√ x
d−

y ∣
∣∣∣ 1 1∣ =

y(x+
√ <
dy) y(2

√
dy)

⇒ x
y is an approximation to

√
d, which is at least as good as 1

2
√
dy2

. If some p
q

approximates irrational α with error ≤ 1
2 then it must be a convergent to α2q

[proved in PSet 9], so all solutions to P-B equation must come from convergents
x
y of
√
d. �

√
Theorem 71. Let x be a quadratic irrational, and x be its conjugate (ie., if x = a+b d

c

with a, b, c, d ∈ Z, then x = a−b
√
d xc ). The continued fraction of is purely periodic (ie.,

[a0, a1, . . . an 1]) if and only if x > 1 and− −1 < x < 0.

Proof - Part 1. First suppose x > 1 and −1 < x < 0. We know that continued
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fraction for x will repeat at some point, ie., there’s an n-digit block that repeats
and a ”start point” m such that

x = [a0, a1, . . . am 1, am, am+1, . . . a− m+n−1]

Want to show that we can take m = 0. We’ll do this by downward induction -
ie., by “advancing” m. We’ll show that am−1 = am−1+n.

We know that ai ≥ 1 for all i. So rewrite xi+1 = 1 as 1 = xixi−ai xi+1
− ai. Take

conjugate
1

= xi ai
xi+1

−

Now by induction, we’ll show that −1 < xi < 0. For i = 0 this is by hypothesis.
If we know for i then xi − a 1

i < −1, since xi < 0 and ai > 1, and so < 1xi+1
−

which forces −1 < xi+1 < 0, which completes the induction.

Then, since
1−ai − = 1)
i+1

−xi ∈ (0,
x

we have − 1
xi+1

∈ (ai, ai + 1) and b− 1 = ai am+k =xi+1
c . Now we know that

am+k+n for all k ≥ 0.

xm = [am, am+1, . . . ] = [am+n, am+n+1, . . . ] = xm+n

so xm = xm+n.

am−1 =

⌊
1 1− = = am+n 1
xm

⌋ ⌊
−
xm+n

⌋
−

therefore we can take m = 0, and so x is purely periodic. �

Proof. Suppose x is purely periodic, x = [a0, a1, . . . an−1]. Want to show that
x > 1 and −1 < x < 0. For any x, a0 = an > 1 ⇒ x > 1. So let’s assume that
n ≥ 4 (can always take larger blocks if not). Now

pn 1x+ pn 2
x = [a0, a1, . . . an

−
−1, x] =

−

qn−1x+ qn−2

⇒ qn−1x
2 + (qn p )x p = 0 = f(x)−2 − n−1 − n−2

x is the other root. We know that x > 1, so it’s enough to show that f(x) has a
root between −1 and 0. Do this by showing that f(0) and f(−1) have opposite
signs.

f(0) = −pn−2 < 0

f(−1) = qn−1 − qn−2 + pn−1 − pn−2
= (an 1 − 1)qn 2 + qn 3 + (a− − − n−1 − 1)pn−2 + pn−3 > 0

�
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