
Lecture 9
Quadratic Residues, Quadratic Reciprocity
Quadratic Congruence - Consider congruence ax2 + bx + c ≡ 0 mod p, with
a = 0 mod p. This can be reduced to x2 + ax + b ≡ 0, if we assume that p is
odd (2 is trivial case). We can now complete the square to get( a

x+
)2 a2

+ b− ≡ 0 mod p
2 4

So we may as well start with x2 ≡ a mod p

If a ≡ 0 mod p, then x ≡ 0 is the only solution. Otherwise, there are either
no solutions, or exactly two solutions (if b2 ≡ a mod p, then x = b mod p).
(x2 ≡ a ≡ b2

±
mod p⇒ p|x2− b2 ⇒ p|(x− b)(x+ b)⇒ x ≡ b or −b mod p). We

want to know when there are 0 or 2 solutions.

(Definition) Quadratic Residue: Let p be an odd prime, a 6≡ 0 mod p. We
say that a is a quadratic residue mod p if a is a square mod p (it is a quadratic
non-residue otherwise).

Lemma 39. Let 6≡
p

a 0 mod p. Then a is a quadratic residuemod p iff
−1

a 2 ≡ 1
mod p

Proof. By FLT, ap−1 ≡ 1 mod p and p − 1 is even. This follows from index
calculus. Alternatively, let’s see it directly(

p−1

a 2

)2
≡

p−1

1 mod p⇒ a 2 ≡ ±1 mod p

Let g be a primitive root mod p. {1, g, g2 . . . gp−2} = 1, 2, . . . p 1 mod p.
Then a ≡ gk mod p for some k. With that a = gk+(p

{
−1)m

− }
mod p so k’s only

defined mod p− 1. In particular, since p− 1 is even, so we know k is even or
odd doesn’t depend on whether we shift by a multiple of p− 1. (ie., k is well
defined mod 2).

We know that a is quadratic residue mod p iff k is even (if k = 2l then a ≡ g2l
(gl)2

≡
mod p). Conversely if a ≡ b2 mod p and b = gl mod p we get a ≡ g2l

mod p, so k is even.

Note: this shows that half of residue class mod p are quadratic residues, and
p−1

half are quadratic nonresidues. Now look at
p−1

≡
( )

≡
k(p

2
−1)

a 2 gk g 2 mod p.
k ≡ 1 mod p iff − = p g divides k(p−1)p 1 ord 2 iff (p− |k(p−1)1) ↔ 2|k ↔ a2 is a
quadratic residue. �
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(Definition) Legendre Symbol:(
a
) {

1 if a is a quadratic residue mod p
=

p −1 if a is a quadratic non-residue mod p

Defined for odd prime p, when (a, p) = 1. (For convenience and clarity, written
(a|p)).

We just showed that (a|p) ≡
p−1

a 2 mod p.
Remark 1. This formula shows us that (a|p)(b|p) = (ab|p).

LHS ≡
p−1 p−1

a 2 b 2 ≡
p−1

(ab) 2 mod p ≡ RHS mod p

and since both sides are ±1 mod p, which is an odd prime, they must be equal
Similarly, (a2|p) = (a|p)2 = 1

Eg.

(−4|79) = (−1 · 22|79) = (−1|79)(2|79)2 = (−1|79) = (−1)39 = −1

Also, 79 is not 1 mod 4 so −1 is quadratic non-residue.

We’ll work toward quadratic reciprocity relating (p|q) to (q|p). We’ll do Gauss’s
3rd proof.

Lemma 40 (Gauss Lemma). Let p be an odd prime, and a 6≡ 0 mod p. For any
integer x, let xp be the residue of x mod p which has the smallest absolute value.
(Divide x by p, get some remainder 0 ≤ b < p. If b > p

2 , let xp = b, if b >
p , let xp be b − p. ie., −p < xp < p ) Let n2 2 2 be the number of integers among
(a)p, (2a)p, (3a)p . . . ((

p−1 )a)p2 which are negative. Then (a|p) = (−1)n.

Proof. (Similar to proof of Fermat’s little Theorem)

We claim first that if 1 ≤ k = l ≤ p−1 then (ka)p = ±(la)p2 . Suppose not true:
(ka)p = ±(la)p. Then, we’d have

ka ≡ ±la mod p⇒ (k ∓ l)a ≡ 0 mod p⇒ k ∓ l ≡ 0 mod p

This is impossible because 2 ≤ k + l ≤ p− 1 and −p < k l2 − < p
2 and k − l = 0

(no multiple of p possible).

So the numbers |(ka) | for k = 1 . . . p 1
p

−
2 are all distinct mod p (there’s p−1

2 of

6 6
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them) and so must be the integers {1, 3 . . . p−12 } in some order.

) 1

p
1 · 2 · · · · ·

( p−

− 1 2

≡
∏
|(ka)p d

k=1

| mo p
2

p−1
2

≡ (−1)n
∏

(ka)p mod p
k=1

p−1
2

≡ (−1)n

k

∏
ka mod p

=1

1≡
p−1 p
a 2 (−1)n 1 · 2 −· · · · · mod p

2

⇒ ≡
p−1

( ( ))
1 a 2 (−1)n mod p

p−1

a 2 ≡ (−1)n mod p

(a|p) ≡ (−1)n mod p

(a|p) = (−1)n since p > 2

where the second step follows from the fact that exactly n of the numbers (ka)p
are < 0. �

Theorem 41. If p is an odd prime, and (a, p) = 1, then if a is odd, we have∑ (a
(

|b) =

(−1)t where p
t =

−1)/2 ja (p2 1)/8
j=1

⌊
|p) = (−1)p

⌋
. Also, (2 −

Proof. We’ll use the Gauss Lemma. Note that we’re only interested in (−1)n.
We only care about n mod 2.

We have, for every k between 1 and p−1
2⌊

ka
⌋ {

0 if (ka)p > 0
ka = p + (ka)p +

p p if{ (ka)p < 0⌊
ka
⌋

0 if (ka) >≡ +
p

|(ka)p| p 0
+ mod 2

1 if (ka)p < 0

Sum all of these congruences mod 2

3



(p∑−1)/2 (p−1)/2
ka

ka ≡
∑ ⌊ ⌋ (p−1)/2

+
∑

|(ka)p|+ n mod 2
p

k=1 k=1 k=1

(p∑−1)/2 (p

ka = a
k=1 k

1

∑−1)/2
k

=1

p
a

2

(
p− 1

=
2

)(
− 1

+ 1
2

a(p2 1)

)
=

−
8

Now
∑
|(a)p|. Since {|a|p, . . . , |p−1a2 |p} is just {1 . . . p−12 },

(p∑−1)/2 (p∑−1)/2
(

k=1

| ka)p| = k
k=1

1 1
=

(
p− 1

2

)(
p−

2 2

p

)
=
− 1

8

Plug in to get

n ≡ a
(
p2 − 1

) (
p2 − 1 ka−

) (p−1)/2

+
∑ ⌊ ⌋

mod 2
8 8 p

k=1

p≡ (a− 1)

(
2 − /

1
) (p−1) 2

+ (
8

k

∑
ka

=1

|p) mod 2

If a is odd, we have p2−1
8 is integer and a− 1 is even, so product ≡ 0 mod 2, to

get

(p∑−1)/2
n ≡

k=1

⌊
ka

p

⌋
mod 2

≡ t mod 2

So (a|p) = (−1)n = (−1)t

When a = 2,

− (p 22 1
−1)/

p
n ≡ +

8
k

∑
=1

⌊
2k

p

⌋
mod 2
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So, note that for k ∈ {1 . . . p−12 }

2 ≤ 2k ≤ p− 1

so
2 2k p

0 <
− 1

p
≤

p
≤ < 1

p

so
2kb
p
c = 0

so
(p∑−1)/2

(2k
k=1

|p) = 0

so
p2

n
− 1 2

≡
p

mod 2 and (2|
1

p) = (− n −
1) = ( 8

8
−1)

So far,

(−1|p) = (−
p−1 1 if p = 1 mod 4

1) 2 =

{
−1 if p = 3 mod 4

Check
2 1 if p = 1, 7 mod 8

(2|
p

p) = (−
−1

1) 8 =

{
−1 if p = 3, 5 mod 4

�

Theorem 42 (Quadratic Reciprocity Law). If p, q are distinct odd primes, then

(p|q)(q|
p−1 q−1 1 if p or q 1 mod 4

p) = ( 1) 2
≡− 2 =

{
−1 otherwise

Proof. Consider the right angled triangle with vertices (0, 0), (p , 0), (p , q )2 2 2 . Note
that: no integer points on vertical side, no nonzero integer points on hypotenuse
(slope is q

p , so if we had integer point (a, b) then b = q
a p ⇒ pb = qa, so p|a, q|b,

and if (a, b) = (0, 0), then a ≥ p, b ≥ q). Ignore the ones on horizontal side.

Claim: the number of integer points on interior of triangle is

(p∑−1)/2
k=1

⌊
qk

p

⌋
6
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Proof. If we have a point (k, l), then 1 ≤ k ≤ p−1 and slope l < q
2 k p ⇒ l < qk

p .
Number⌊ ⌋of points on the segment x = k is the number of possible l, which is
just qk

p . �

Add these (take triangle, rotate, add to make rectangle) - adding points in
interior of rectangle is

(p∑−1)/2⌊ ⌋ (p
pl ∑−1)/2
q

(
q 1

+

⌊
qk −
p

⌋
=

(
p− 1

2

)
2

l=1 k=1

)

(q|p) = (−1)t1where t1 =
∑⌊

qk

p

pl

⌋
(p|q) = (−1)t2where t2 =

∑⌊
q

(p

⌋
|q)(q|p) = (−1)t1+t2where t1 + t2 = total number of points

�

6



MIT OpenCourseWare
http://ocw.mit.edu

18.781 Theory of Numbers
Spring 2012
 
 
 
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



