Lecture 4

FFermat, Euler, Wilson, Linear Congruences

(Definition) Complete Residue System: A complete residue system mod m is a collection of integers $a_{1} \ldots a_{m}$ such that $a_{i} \not \equiv a_{j} \bmod m$ if $i \neq j$ and any integer n is congruent to some $a_{i} \bmod m$
(Definition) Reduced Residue System: A reduced residue system mod m is a collection of integers $a_{1} \ldots a_{k}$ such that $a_{i} \not \equiv a_{j} \bmod m$ if $i \neq j$ and $\left(a_{i}, m\right)=1$ for all i, and any integer n coprime to m must be congruent to some $a_{i} \bmod m$. Eg., take any complete residue system $\bmod m$ and take the subset consisting of all the integers in it which are coprime to m - these will form a reduced residue system

Eg. For $m=12$
complete $=\{1,2,3,4,5,6,7,8,9,10,11,12\}$
reduced $=\{1,5,7,11\}$
(Definition) Euler's Totient Function: The number of elements in a reduced residue system mod m is called Euler's totient function: $\phi(m)$ (ie., the number of positive integers $\leq m$ and coprime to m)

Theorem 15 (Euler's Theorem).

$$
\text { If }(a, m)=1, \text { then } a^{\phi(m)} \equiv 1 \quad \bmod m
$$

Proof.

Lemma 16. If $(a, m)=1$ and $r_{1} \ldots r_{k}$ is a reduced residue system $\bmod m, k=\phi(m)$, then $a r_{1} \ldots a r_{k}$ is also a reduced residue system mod m.

Proof. All we need to show is that $a r_{i}$ are all coprime to m and distinct $\bmod m$, since there are k of these $a r_{i}$ and k is the number of elements in any residue system mod m. We know that if $(r, m)=1$ and $(a, m)=1$ then $(a r, m)=1$. Also, if we had $a r_{i} \equiv a r_{j} \bmod m$, then $m \mid a r_{i}-a r_{j}=a\left(r_{i}-r_{j}\right)$. If $(a, m)=1$ then $m \mid r_{i}-r_{j} \Rightarrow r_{i} \equiv r_{j} \bmod m$, which cannot happen unless $i=j$.

Choose a reduced residue system $r_{1} \ldots r_{k} \bmod m$ with $k=\phi(m)$. By lemma, $a r_{1} \ldots a r_{k}$ is also a reduced residue system. These two must be permutations of
each other $\bmod m\left(\right.$ ie., $\left.a r_{i} \equiv r_{j(i)} \bmod m\right)$.

$$
\begin{aligned}
r_{1} r_{2} \ldots r_{k} & \equiv a r_{1} a r_{2} \ldots a r_{k} \quad(\bmod m) \\
r_{1} r_{2} \ldots r_{k} & \equiv a^{\phi(m)} r_{1} r_{2} \ldots r_{k} \quad(\bmod m) \\
\left(r_{1} r_{2} \ldots r_{k}, m\right) & =1 \Rightarrow \text { can cancel } \\
a^{\phi(m)} & \equiv 1 \quad(\bmod m)
\end{aligned}
$$

Corollary 17 (Fermat's Little Theorem).

$$
a^{p} \equiv a \quad(\bmod p) \quad \text { for prime } p \text { and integer } a
$$

Proof. If $p \nmid a$ (ie., $(a, p)=1$) then $a^{\phi(p)} \equiv 1 \bmod p$ by Euler's Theorem. $\phi(p)=$ $p-1 \Rightarrow a^{p-1} \equiv 1 \bmod p \Rightarrow a^{p} \equiv a \bmod p$. If $p \mid a$, then $a \equiv 0 \bmod p$ so both sides are $0 \equiv 0 \bmod p$.

Proof by induction.

Lemma 18 (Freshman's Dream).

$$
(x+y)^{p} \equiv x^{p}+y^{p} \quad(\bmod p) \quad x, y \in \mathbb{Z}, \text { prime } p
$$

Use the Binomial Theorem.

$$
(x+y)^{p}=x^{p}+y^{p}+\underbrace{\sum_{k=1}^{p-1}\binom{p}{k} x^{k} y^{p-k}}_{\equiv 0 \bmod p}
$$

We saw that $\binom{p}{k}$ is divisible by p for $1 \leq k \leq p-1$, so

$$
(x+y)^{p} \equiv x^{p}+y^{p} \quad(\bmod p)
$$

Induction base case of $a=0$ is obvious. Check to see if it holds for $a+1$ assuming it holds for a

$$
\begin{aligned}
(a+1)^{p}-(a+1) & \equiv a^{p}+1-(a+1) \quad(\bmod p) \\
& \equiv a^{p}-a \quad(\bmod p) \\
& \equiv 0 \quad(\bmod p) \\
(a+1)^{p} & \equiv(a+1) \quad(\bmod p)
\end{aligned}
$$

This is reversible (if holds for a, then also for $a-1$), and so holds for all integers by stepping up or down

Proposition 19 (Inverses of elements $\bmod m)$. If $(a, m)=1$, then there is a unique integer $b \bmod m$ such that $a b \equiv 1 \bmod m$. This b is denoted by $\frac{1}{a}$ or $a^{-1} \bmod m$

Proof of Existence. Since $(a, m)=1$ we know that $a x+m y=1$ for some integers x, y, and so $a x \equiv 1 \bmod m$. Set $b=x$.

Proof of Uniqueness. If $a b_{1} \equiv 1 \bmod m$ and $a b_{2} \equiv 1 \bmod m$, then $a b_{1} \equiv a b_{2}$ $\bmod m \Rightarrow m \mid a\left(b_{1}-b_{2}\right)$. Since $(m, a)=1, m \mid b_{1}-b_{2} \Rightarrow b_{1} \equiv b_{2} \bmod m$.

Theorem 20 (Wilson's Theorem). If p is a prime then $(p-1)!\equiv-1 \bmod p$

Proof. Assume that p is odd (trivial for $p=2$).

Lemma 21. The congruence $x^{2} \equiv 1 \bmod p$ has only the solutions $x \equiv \pm 1 \bmod p$

Proof.

$$
\begin{aligned}
& x^{2} \equiv 1 \quad \bmod p \\
\Rightarrow & p \mid x^{2}-1 \\
\Rightarrow & p \mid(x-1)(x+1) \\
\Rightarrow & p \mid x \pm 1 \\
\Rightarrow & x \equiv \pm 1 \quad \bmod p
\end{aligned}
$$

Note that $x^{2} \equiv 1 \bmod p \Rightarrow(x, p)=1$ and x has inverse and $x \equiv x^{-1} \bmod p$ $\{1 \ldots p-1\}$ is a reduced residue system $\bmod p$. Pair up elements a with inverse $a^{-1} \bmod p$. Only singletons will be 1 and -1 .

$$
\begin{aligned}
(p-1)! & \equiv\left(a_{1} \cdot a_{1}^{-1}\right)\left(a_{2} \cdot a_{2}^{-1}\right) \ldots\left(a_{k} \cdot a_{k}^{-1}\right)(1)(-1) \quad(\bmod p) \\
& \equiv-1 \quad(\bmod p)
\end{aligned}
$$

Wilson's Theorem lets us solve congruence $x^{2} \equiv-1 \bmod p$

Theorem 22. The congruence $x^{2} \equiv-1 \bmod p$ is solvable if and only if $p=2$ or $p \equiv 1 \bmod 4$

Proof. $p=2$ is easy. We'll show that there is no solution for $p \equiv 3 \bmod 4$ by contradiction. Assume $x^{2} \equiv-1 \bmod p$ for some x coprime to $p(p=4 k+3)$. Note that

$$
p-1=4 k+2=2(2 k+1)
$$

so $\left(x^{2}\right)^{2 k+1} \equiv(-1)^{2 k+1} \equiv-1 \bmod p$. But also,

$$
\left(x^{2}\right)^{2 k+1} \equiv x^{4 k+2} \equiv x^{p-1} \equiv 1 \quad \bmod p
$$

So $1 \equiv-1 \bmod p \Rightarrow p \mid 2$, which is impossible since p is an odd prime.
If $p \equiv 1 \bmod 4$:

$$
\begin{aligned}
& (p-1)!\equiv-1 \quad(\bmod p) \text { by Wilson's Theorem } \\
& (1)(2) \ldots(p-1) \equiv-1 \quad(\bmod p) \\
& \underbrace{\left(1 \cdot 2 \ldots \frac{p-1}{2}\right)}_{x} \underbrace{\left(\frac{p+1}{2} \ldots p-1\right)}_{\begin{array}{c}
\text { show that second factor } \\
\text { equals the first }
\end{array}} \equiv-1 \quad(\bmod p) \\
& p-1 \equiv(-1) 1 \quad(\bmod p) \\
& p-2 \equiv(-1) 2 \quad(\bmod p) \\
& \vdots \\
& \frac{p+1}{2} \equiv(-1) \frac{p-1}{2} \quad(\bmod p) \\
& \underbrace{\left(\frac{p+1}{2}\right) \ldots(p-1)}_{\text {second factor }} \equiv(-1)^{\frac{p-1}{2}} \underbrace{\left(1 \cdot 2 \ldots\left(\frac{p-1}{2}\right)\right)}_{x}(\bmod p)
\end{aligned}
$$

$\frac{p-1}{2}$ is even since $p \equiv 1 \bmod 4$, and so second factor equals the first factor, so $x=\left(\frac{p-1}{2}\right)$! solves $x^{2} \equiv-1 \bmod p$ if $p \equiv 1 \bmod 4$.

Theorem 23. There are infinitely many primes of form $4 k+1$

Proof. As in Euclid's proof, assume finitely many such primes $p_{1} \ldots p_{n}$. Consider the positive integer

$$
N=\left(2 p_{1} p_{2} \ldots p_{n}\right)^{2}+1
$$

N is an odd integer >1, so it has an odd prime factor $q \neq p_{i}$, since each p_{i} divides $N-1$. $q \mid N \Rightarrow\left(2 p_{1} \ldots p_{n}\right)^{2} \equiv-1 \bmod q$, so $x^{2} \equiv-1 \bmod q$ has a solution and so by theorem $q \equiv 1 \bmod 4$, which contradicts $q \neq p_{i}$.
(Definition) Congruence: A congruence (equation) is of the form $a_{n} x^{n}+$ $a_{n-1} x^{n-1} \cdots+a_{0} \equiv 0 \bmod m$ where $a_{n} \ldots a_{0}$ are integers. Solution of the congruence are integers or residue classes $\bmod m$ that satisfy the equation.

Eg. $x^{p}-x \equiv 0 \bmod p$. How many solutions? p.
Eg. $x^{2} \equiv-1 \bmod 5$. Answers $=2,3$.
Eg. $x^{2} \equiv-1 \bmod 43$. No solutions since $43 \equiv 3 \bmod 4$.
Eg. $x^{2} \equiv 1 \bmod 15$. Answers $= \pm 1, \pm 4 \bmod 15$.
Note: The number of solutions to a non-prime modulus can be larger than the degree
(Definition) Linear Congruence: a congruence of degree $1(a x \equiv b \bmod m)$

Theorem 24. Let $g=(a, m)$. Then there is a solution to $a x \equiv b \bmod m$ if and only if $g \mid b$. If it has solutions, then it has exactly g solutions mod m.

Proof. Suppose $g \nmid b$. We want to show that the congruence doesn't have a solution. Suppose x_{0} is a solution $\Rightarrow a x_{0}=b+m k$ for some integer k. Since $g|a, g| m, g$ divides $a x_{0}-m k=b$, which is a contradiction. Conversely, if $g \mid b$, we want to show that solutions exist. We know $g=a x_{0}+m y_{0}$ for integer x_{0}, y_{0}. If $b=b^{\prime} g$, multiply by b^{\prime} to get

$$
\begin{aligned}
b=b^{\prime} g & =b^{\prime} \mid a x_{0}+m y_{0} \\
& =a\left(b^{\prime} x_{0}\right)+m\left(b^{\prime} y_{0}\right) \\
& \Rightarrow a\left(b^{\prime} x_{0}\right) \equiv b \quad(\bmod m)
\end{aligned}
$$

and so $x=b^{\prime} x_{0}$ is a solution.
We need to show that there are exactly g solutions. We know that there is one solution x_{1}, and the congruence says $a x \equiv b \equiv a x_{1} \bmod m$.

$$
\begin{aligned}
a\left(x-x_{1}\right) & \equiv 0 \quad(\bmod m) \\
a\left(x-x_{1}\right) & \equiv m k \text { for some integer } k \\
g=(a, m) & \Rightarrow a=a^{\prime} g, m=m^{\prime} g
\end{aligned}
$$

So $\left(a, m^{\prime}\right)=1$, so $a^{\prime} g\left(x-x_{1}\right)=m^{\prime} g k \Rightarrow a\left(x-x_{1}\right)=m^{\prime} k$ for some k. So $m^{\prime} \mid x-x_{1}$, so $x \equiv x_{1} \bmod m^{\prime}$, so any solution of the congruence must be congruent to x
$\bmod m^{\prime}=m$. So all the solutions are $x_{1}, x_{1}+m^{\prime}, x_{1}+2 m^{\prime}, \ldots, x_{1}+(g-1) m^{\prime}$. They are all distinct, so they are all the solutions $\bmod m$.

MIT OpenCourseWare
http://ocw.mit.edu

18.781 Theory of Numbers

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

