Lecture 4 FFermat, Euler, Wilson, Linear Congruences

(Definition) Complete Residue System: A complete residue system mod m is a collection of integers $a_1 \dots a_m$ such that $a_i \not\equiv a_j \mod m$ if $i \neq j$ and any integer n is congruent to some $a_i \mod m$

(Definition) Reduced Residue System: A reduced residue system mod m is a collection of integers $a_1 \dots a_k$ such that $a_i \not\equiv a_j \mod m$ if $i \neq j$ and $(a_i, m) = 1$ for all i, and any integer n coprime to m must be congruent to some $a_i \mod m$. Eg., take any complete residue system mod m and take the subset consisting of all the integers in it which are coprime to m - these will form a reduced residue system

Eg. For m = 12complete = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} reduced = {1, 5, 7, 11}

(Definition) Euler's Totient Function: The number of elements in a reduced residue system mod *m* is called **Euler's totient function**: $\phi(m)$ (i.e., the number of positive integers $\leq m$ and coprime to *m*)

Theorem 15 (Euler's Theorem).

If
$$(a, m) = 1$$
, then $a^{\phi(m)} \equiv 1 \mod m$

Proof.

Lemma 16. If (a, m) = 1 and $r_1 \dots r_k$ is a reduced residue system mod m, $k = \phi(m)$, then $ar_1 \dots ar_k$ is also a reduced residue system mod m.

Proof. All we need to show is that ar_i are all coprime to m and distinct mod m, since there are k of these ar_i and k is the number of elements in any residue system mod m. We know that if (r, m) = 1 and (a, m) = 1 then (ar, m) = 1. Also, if we had $ar_i \equiv ar_j \mod m$, then $m|ar_i - ar_j = a(r_i - r_j)$. If (a, m) = 1 then $m|r_i - r_j \Rightarrow r_i \equiv r_j \mod m$, which cannot happen unless i = j.

Choose a reduced residue system $r_1 \dots r_k \mod m$ with $k = \phi(m)$. By lemma, $ar_1 \dots ar_k$ is also a reduced residue system. These two must be permutations of

each other mod m (ie., $ar_i \equiv r_{j(i)} \mod m$).

$$r_1 r_2 \dots r_k \equiv a r_1 a r_2 \dots a r_k \pmod{m}$$
$$r_1 r_2 \dots r_k \equiv a^{\phi(m)} r_1 r_2 \dots r_k \pmod{m}$$
$$(r_1 r_2 \dots r_k, m) = 1 \Rightarrow \text{ can cancel}$$
$$a^{\phi(m)} \equiv 1 \pmod{m}$$

Corollary 17 (Fermat's Little Theorem).

 $a^p \equiv a \pmod{p}$ for prime p and integer a

Proof. If $p \nmid a$ (i.e., (a, p) = 1) then $a^{\phi(p)} \equiv 1 \mod p$ by Euler's Theorem. $\phi(p) = p - 1 \Rightarrow a^{p-1} \equiv 1 \mod p \Rightarrow a^p \equiv a \mod p$. If $p \mid a$, then $a \equiv 0 \mod p$ so both sides are $0 \equiv 0 \mod p$.

Proof by induction.

Lemma 18 (Freshman's Dream).

$$(x+y)^p \equiv x^p + y^p \pmod{p}$$
 $x, y \in \mathbb{Z}$, prime p

Use the Binomial Theorem.

$$(x+y)^p = x^p + y^p + \underbrace{\sum_{k=1}^{p-1} \binom{p}{k} x^k y^{p-k}}_{\equiv 0 \mod p}$$

We saw that $\binom{p}{k}$ is divisible by p for $1 \le k \le p - 1$, so

$$(x+y)^p \equiv x^p + y^p \pmod{p}$$

Induction base case of a = 0 is obvious. Check to see if it holds for a + 1 assuming it holds for a

$$(a+1)^p - (a+1) \equiv a^p + 1 - (a+1) \pmod{p}$$
$$\equiv a^p - a \pmod{p}$$
$$\equiv 0 \pmod{p}$$
$$(a+1)^p \equiv (a+1) \pmod{p}$$

This is reversible (if holds for a, then also for a - 1), and so holds for all integers by stepping up or down

Proposition 19 (Inverses of elements mod *m*). If (a, m) = 1, then there is a unique integer $b \mod m$ such that $ab \equiv 1 \mod m$. This b is denoted by $\frac{1}{a}$ or $a^{-1} \mod m$

Proof of Existence. Since (a, m) = 1 we know that ax + my = 1 for some integers x, y, and so $ax \equiv 1 \mod m$. Set b = x.

Proof of Uniqueness. If $ab_1 \equiv 1 \mod m$ and $ab_2 \equiv 1 \mod m$, then $ab_1 \equiv ab_2 \mod m \Rightarrow m|a(b_1 - b_2)$. Since (m, a) = 1, $m|b_1 - b_2 \Rightarrow b_1 \equiv b_2 \mod m$.

Theorem 20 (Wilson's Theorem). If *p* is a prime then $(p-1)! \equiv -1 \mod p$

Proof. Assume that p is odd (trivial for p = 2).

Lemma 21. The congruence $x^2 \equiv 1 \mod p$ has only the solutions $x \equiv \pm 1 \mod p$

Proof.

$$\begin{aligned} x^2 &\equiv 1 \mod p \\ \Rightarrow p | x^2 - 1 \\ \Rightarrow p | (x - 1)(x + 1) \\ \Rightarrow p | x \pm 1 \\ \Rightarrow x &\equiv \pm 1 \mod p \end{aligned}$$

Note that $x^2 \equiv 1 \mod p \Rightarrow (x, p) = 1$ and x has inverse and $x \equiv x^{-1} \mod p$ $\{1 \dots p - 1\}$ is a reduced residue system mod p. Pair up elements a with inverse $a^{-1} \mod p$. Only singletons will be 1 and -1.

$$(p-1)! \equiv (a_1 \cdot a_1^{-1})(a_2 \cdot a_2^{-1}) \dots (a_k \cdot a_k^{-1})(1)(-1) \pmod{p}$$

$$\equiv -1 \pmod{p}$$

Wilson's Theorem lets us solve congruence $x^2 \equiv -1 \mod p$

Theorem 22. The congruence $x^2 \equiv -1 \mod p$ is solvable if and only if p = 2 or $p \equiv 1 \mod 4$

Proof. p = 2 is easy. We'll show that there is no solution for $p \equiv 3 \mod 4$ by contradiction. Assume $x^2 \equiv -1 \mod p$ for some x coprime to p (p = 4k + 3). Note that

$$p - 1 = 4k + 2 = 2(2k + 1)$$

so $(x^2)^{2k+1} \equiv (-1)^{2k+1} \equiv -1 \mod p$. But also,

$$(x^2)^{2k+1} \equiv x^{4k+2} \equiv x^{p-1} \equiv 1 \mod p$$

So $1 \equiv -1 \mod p \Rightarrow p|2$, which is impossible since *p* is an odd prime. If $p \equiv 1 \mod 4$:

$$(p-1)! \equiv -1 \pmod{p} \text{ by Wilson's Theorem}$$

$$(1)(2) \dots (p-1) \equiv -1 \pmod{p}$$

$$\underbrace{\left(1 \cdot 2 \dots \frac{p-1}{2}\right)}_{x} \underbrace{\left(\frac{p+1}{2} \dots p-1\right)}_{\text{show that second factor}} \equiv -1 \pmod{p}$$

$$p-1 \equiv (-1)1 \pmod{p}$$

$$p-2 \equiv (-1)2 \pmod{p}$$

$$\vdots$$

$$\frac{p+1}{2} \equiv (-1)\frac{p-1}{2} \pmod{p}$$

$$\underbrace{\left(\frac{p+1}{2}\right) \dots (p-1)}_{\text{second factor}} \equiv (-1)^{\frac{p-1}{2}} \underbrace{\left(1 \cdot 2 \dots \left(\frac{p-1}{2}\right)\right)}_{x} \pmod{p}$$

 $\frac{p-1}{2}$ is even since $p \equiv 1 \mod 4$, and so second factor equals the first factor, so $x = \left(\frac{p-1}{2}\right)!$ solves $x^2 \equiv -1 \mod p$ if $p \equiv 1 \mod 4$.

Theorem 23. There are infinitely many primes of form 4k + 1

Proof. As in Euclid's proof, assume finitely many such primes $p_1 \dots p_n$. Consider the positive integer

$$N = (2p_1p_2\dots p_n)^2 + 1$$

N is an odd integer > 1, so it has an odd prime factor $q \neq p_i$, since each p_i divides N - 1. $q|N \Rightarrow (2p_1 \dots p_n)^2 \equiv -1 \mod q$, so $x^2 \equiv -1 \mod q$ has a solution and so by theorem $q \equiv 1 \mod 4$, which contradicts $q \neq p_i$.

(Definition) Congruence: A **congruence** (equation) is of the form $a_n x^n + a_{n-1}x^{n-1}\cdots + a_0 \equiv 0 \mod m$ where $a_n \ldots a_0$ are integers. Solution of the congruence are integers or residue classes mod m that satisfy the equation.

Eg. $x^p - x \equiv 0 \mod p$. How many solutions? *p*.

Eg. $x^2 \equiv -1 \mod 5$. Answers = 2, 3.

Eg. $x^2 \equiv -1 \mod 43$. No solutions since $43 \equiv 3 \mod 4$.

Eg. $x^2 \equiv 1 \mod 15$. Answers $= \pm 1, \pm 4 \mod 15$.

Note: The number of solutions to a non-prime modulus can be larger than the degree

(**Definition**) Linear Congruence: a congruence of degree 1 ($ax \equiv b \mod m$)

Theorem 24. Let g = (a, m). Then there is a solution to $ax \equiv b \mod m$ if and only if g|b. If it has solutions, then it has exactly g solutions mod m.

Proof. Suppose $g \nmid b$. We want to show that the congruence doesn't have a solution. Suppose x_0 is a solution $\Rightarrow ax_0 = b + mk$ for some integer k. Since g|a, g|m, g divides $ax_0 - mk = b$, which is a contradiction. Conversely, if g|b, we want to show that solutions exist. We know $g = ax_0 + my_0$ for integer x_0, y_0 . If b = b'g, multiply by b' to get

$$b = b'g = b'|ax_0 + my_0$$

= $a(b'x_0) + m(b'y_0)$
 $\Rightarrow a(b'x_0) \equiv b \pmod{m}$

and so $x = b'x_0$ is a solution.

We need to show that there are exactly *g* solutions. We know that there is one solution x_1 , and the congruence says $ax \equiv b \equiv ax_1 \mod m$.

$$a(x - x_1) \equiv 0 \pmod{m}$$

$$a(x - x_1) \equiv mk \text{ for some integer } k$$

$$g = (a, m) \Rightarrow a = a'g, \ m = m'g$$

So (a, m') = 1, so $a'g(x-x_1) = m'gk \Rightarrow a(x-x_1) = m'k$ for some k. So $m'|x-x_1$, so $x \equiv x_1 \mod m'$, so any solution of the congruence must be congruent to x

mod m' = m. So all the solutions are $x_1, x_1 + m', x_1 + 2m', \dots, x_1 + (g-1)m'$. They are all distinct, so they are all the solutions mod m.

18.781 Theory of Numbers Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.