18.781 Practice Questions for Final Exam

Note: The actual exam will be shorter (about 15 of these questions), in case you are timing yourself.

- 1. Find three solutions in positive integers of $|x^2 6y^2| = 1$ by first calculating the continued fraction expansion of $\sqrt{6}$.
- 2. If $\theta_1 = [3, 1, 5, 9, a_1, a_2, \dots]$ and $\theta_2 = [3, 1, 5, 7, b_1, b_2, \dots]$, show that $|\theta_1 \theta_2| < 49/7095$.
- 3. For n = 1728, figure out the number of positive divisors of n, and the sum of its positive divisors.
- 4. Use multiplicativity to calculate the sum

$$\sum_{d|2592} \frac{\phi(d)}{d}$$

- 5. Prove that if a prime p divides $n^2 n + 1$ for an integer n, then $p \equiv 1 \pmod{6}$.
- 6. Compute the value of the infinite periodic fraction $\langle 12, \overline{24} \rangle$. Find the smallest positive (i.e. both x, y > 0) solution of $x^2 145y^2 = 1$.
- 7. Determine whether there is a nontrivial integer solution of the equation

$$49x^2 + 5y^2 + 38z^2 - 28xy + 70xz - 28yz = 0.$$

- 8. Find a Pythagorean triangle such that the difference of the two (shorter) sides is 1, and every side is at least 100.
- 9. Show that $x^2 + 2y^2 = 8z + 5$ has no integral solution.
- 10. Define a sequence by $a_0 = 2$, $a_1 = 5$ and $a_n = 5a_{n-1} 4a_{n-2}$ for $n \ge 2$. Show that $a_n a_{n+2} a_{n+1}^2$ is a square for every $n \ge 0$.
- 11. Let $p \nmid ab$. Show that $ax^2 + by^2 \equiv c \pmod{p}$ has a solution.
- 12. How many solutions are there to $x^2 + 3x + 18 \equiv 0 \pmod{28}$? Find all of them.
- 13. Let a, m be positive integers, not necessarily coprime. Show that $a^m \equiv a^{m-\phi(m)} \pmod{m}$.
- 14. Parametrize all the rational points on the curve $x^2 3y^2 = 1$.
- 15. Find an integer solution of 37x + 41y = -3.
- 16. Show that if n > 1 then $n \nmid 2^n 1$. (Hint: consider the smallest prime dividing n).
- 17. Let $p \ge 11$ be prime. Show that for some $n \in \{1, \ldots, 9\}$, both n and n + 1 are quadratic residues.
- 18. Show that if $23a^2 \equiv b^2 \pmod{17}$ then $23a^2 \equiv b^2 \pmod{289}$.

- 19. Calculate the product $\prod_{\alpha}(2-\alpha)$, where α runs over the primitive 14'th roots of unity.
- 20. Let f be a multiplicative function with f(1) = 1, and let f^{-1} be its inverse for Dirichlet convolution. Show that f^{-1} is multiplicative as well, and that for squarefree n, we have $f^{-1}(n) = \mu(n)f(n)$.

18.781 Theory of Numbers Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.