18.781 Practice Questions for Final Exam

Note: The actual exam will be shorter (about 15 of these questions), in case you are timing yourself.

1. Find three solutions in positive integers of $\left|x^{2}-6 y^{2}\right|=1$ by first calculating the continued fraction expansion of $\sqrt{6}$.
2. If $\theta_{1}=\left[3,1,5,9, a_{1}, a_{2}, \ldots\right]$ and $\theta_{2}=\left[3,1,5,7, b_{1}, b_{2}, \ldots\right]$, show that $\left|\theta_{1}-\theta_{2}\right|<49 / 7095$.
3. For $n=1728$, figure out the number of positive divisors of n, and the sum of its positive divisors.
4. Use multiplicativity to calculate the sum

$$
\sum_{d \mid 2592} \frac{\phi(d)}{d}
$$

5. Prove that if a prime p divides $n^{2}-n+1$ for an integer n, then $p \equiv 1(\bmod 6)$.
6. Compute the value of the infinite periodic fraction $\langle 12, \overline{24}\rangle$. Find the smallest positive (i.e. both $x, y>0$) solution of $x^{2}-145 y^{2}=1$.
7. Determine whether there is a nontrivial integer solution of the equation

$$
49 x^{2}+5 y^{2}+38 z^{2}-28 x y+70 x z-28 y z=0
$$

8. Find a Pythagorean triangle such that the difference of the two (shorter) sides is 1, and every side is at least 100 .
9. Show that $x^{2}+2 y^{2}=8 z+5$ has no integral solution.
10. Define a sequence by $a_{0}=2, a_{1}=5$ and $a_{n}=5 a_{n-1}-4 a_{n-2}$ for $n \geq 2$. Show that $a_{n} a_{n+2}-a_{n+1}^{2}$ is a square for every $n \geq 0$.
11. Let $p \nmid a b$. Show that $a x^{2}+b y^{2} \equiv c(\bmod p)$ has a solution.
12. How many solutions are there to $x^{2}+3 x+18 \equiv 0(\bmod 28)$? Find all of them.
13. Let a, m be positive integers, not necessarily coprime. Show that $a^{m} \equiv a^{m-\phi(m)}(\bmod m)$.
14. Parametrize all the rational points on the curve $x^{2}-3 y^{2}=1$.
15. Find an integer solution of $37 x+41 y=-3$.
16. Show that if $n>1$ then $n \nmid 2^{n}-1$. (Hint: consider the smallest prime dividing n).
17. Let $p \geq 11$ be prime. Show that for some $n \in\{1, \ldots, 9\}$, both n and $n+1$ are quadratic residues.
18. Show that if $23 a^{2} \equiv b^{2}(\bmod 17)$ then $23 a^{2} \equiv b^{2}(\bmod 289)$.
19. Calculate the product $\prod_{\alpha}(2-\alpha)$, where α runs over the primitive 14^{\prime} th roots of unity.
20. Let f be a multiplicative function with $f(1)=1$, and let f^{-1} be its inverse for Dirichlet convolution. Show that f^{-1} is multiplicative as well, and that for squarefree n, we have $f^{-1}(n)=\mu(n) f(n)$.

MIT OpenCourseWare
http://ocw.mit.edu

18.781 Theory of Numbers

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

