
18.782 Introduction to Arithmetic Geometry Fall 2013
Lecture #3 09/12/2013

3.1 Quadratic reciprocity

Recall that for each odd prime p the Legendre symbol (a) is defined asp

(1 if a is a nonzero quadratic residue modulo p,
a

lo
p

)
=

0 if a is zero modu p,

−1 otherwise.

The Legendre symbol is multiplicative, (a)(b) = (ab), and it can be computed using Euler’sp p p
criterion: (

a

p

)
≡

p−1

a 2 mod p.

Both statements follow from the fact that the multiplicative group (Z/pZ)× is cyclic of
order p− 1 with −1 as the unique element of order 2 (the case a = 0 is clear). We also have
the well known law of quadratic reciprocity.

p−1 q−1

Theorem 3.1 (Gauss). For all odd primes p and q we have (p)(q) = (−1)()()
2 2 .q p

I expect you have all seen proofs of this theorem, but I recently came across the following
proof due to Rousseau [4], which Math Overflow overwhelmingly voted as the “best” proof
quadratic reciprocity. The proof is quite short, so I thought I would share it with you.

Proof. Let s = (p − 1)/2, t = (q − 1)/2 and u = (pq − 1)/2. Consider the three subsets of
(Z/pqZ)× defined by

A = {x : x mod p ∈ [1, s]}, B = {x : x mod q ∈ [1, t]}, C = {x : x mod pq ∈ [1, u]}.

These subsets each contain exactly half of the (p − 1)(q − 1) = 4st elements of (Z/pqZ)×

and thus have size 2st. Furthermore, for all x ∈ (Z/pqZ)× each subset contains exactly one
of x or −x. It follows that the products a, b, c over the sets A,B,C differ only in sign, so
their ratios are all ±1. The intersection of A and B has size st, hence there are 2st−st = st
sign differences between the elements of A and B, and therefore a/b ≡ (−1)st mod pq. To
complete the proof, we just need to show that a/b ≡ (p)(q) mod pq, since two numbers thatq p
are both equal to ±1 and congruent mod pq > 2 must be equal over Z.

Considering the product a modulo q, it is clear that a ≡ (q−1)!s mod q, since modulo q
we are just multiplying s copies of the integers from 1 to q − 1. To compute c modulo q
we first compute the product of the integers in [1, u] that are not divisible by q, which is
(q−1)!st!, and then divide by the product of the integers in [1, u] that are multiples of p, since
these do not lie in (Z/pqZ)×, which is p×2p×· · · tp = ptt!. Thus c ≡ (q

t
−1)!s/pt mod q, and

we have a/c ≡ p ≡ ±1 mod q. But we know that a/c ≡ ±1 mod pq, so this congruence also
p qholds mod pq. By Euler’s criterion, we have a/c ≡ () mod pq. Similarly, b/cq ≡ () mod pq,p

qand since b/c ≡ ±1 mod pq, we have c/b ≡ b/c mod pq, and therefore c/b ≡ () mod pq.p

Thus a/b = (a/c)(c/b) ≡ p q()() mod pq, as desired.q p

Andrew V. Sutherland
1

http://mathoverflow.net/questions/1420/whats-the-best-proof-of-quadratic-reciprocity

3.2 Finite fields

We recall some standard facts about finite fields. For each prime power q there is, up to
isomorphism, a unique field Fq with q elements (and it is easy to show that the order of
every finite field is a prime power). We have the prime fields Fp ' Z/pZ, and for any
positive integer n the field Fpn can be constructed as the splitting field of the (separable)
polynomial xp

n − x over Fp (thus every finite field is a Galois extension of its prime field).
More generally, every degree n extension of Fq is isomorphic to Fqn , the splitting field of
xq

n − x over Fq, and the Galois group Gal(Fqn/Fq) is cyclic over order n, generated by the
q-power Frobenius automorphism x 7→ xq. We have the inclusion Fqm Fqn if and only if
m divides n: if m|n then xq

m
= x implies xq

n
= x, and if Fqm ⊆ Fqn

⊆
then Fqn has dimension

n/m as a vector space over Fqm .
While defining Fq = Fpn as a splitting field is conceptually simple, in practice we typically

represent Fq more explicitly by adjoining the root of an irreducible polynomial f ∈ Fp[x]
of degree n and define Fq as the ring quotient Fp[x]/(f). The ring Fp[x] is a principle ideal
domain, so the prime ideal (f) is maximal and the quotient is therefore a field. Such an
irreducible polynomial always exists: by the primitive element theorem we know that the
separable extension Fq/Fp can be constructed as Fp(α) for some α ∈ Fq whose minimal
polynomial f ∈ Fp[x] is irreducible and of degree n. While no deterministic polynomial
time algorithm is known for constructing f (even for n = 2 (!)), in practice the problem is
readily solved using a randomized algorithm, as discussed below.

Elements s and t of Fq ' Fp[x]/(f) correspond to polynomials in Fp[x] of degree at
most n. The sum s+t is computed as in Fp[x], and the product st is computed as a product
in Fp[x] and then reduced modulo f , using Euclidean division and taking the remainder.
To compute the inverse of s, one uses the (extended) Euclidean gcd algorithm to compute
polynomials u, v ∈ Fp[x] that satisfy

us+ vf = gcd(s, f) = 1,

and u is then the inverse of s modulo f ; note that gcd(s, f) = 1 since f is irreducible. Using
fast algorithms for polynomial arithmetic, all of the field operations in Fq can be computed
in time that is quasi-linear in log q = n log p, which is also the amount of space needed to
represent an element of Fq (up to a constant factor).

Example 3.2. F8 ' F2[t]/(t
3 + t+ 1) = {0, 1, t, t+ 1, t2, t2 + 1, t2 + t, t2 + t+ 1} is a finite

field of order 8 in which, for example, (t2 + 1)(t2 + t) = t + 1. Note that F2 = {0, 1} is its
only proper subfield (in particular, F4 6⊆ F8).

The most thing we need to know about finite fields is that their multiplicative groups
are cyclic. This is an immediate consequence of a more general fact.

Theorem 3.3. Any finite subgroup G of the multiplicative group of a field k is cyclic.

Proof. The group G must be abelian, so by the structure theorem for finite abelian groups
it is isomorphic to a product of cyclic groups

G ' Z/n1Z× Z/n2Z× · · · × Z/nkZ,

where each ni > 1 and we may assume that ni|ni+1. If G is not cyclic, then k ≥ 2 and G
contains a subgroup isomorphic to Z/n1Z× Z/n1Z and therefore contains at least n21 > n1
elements whose orders divide n1. But the polynomial xn1 − 1 has at most n1 roots in k, so
this is not possible and G must be cyclic.

2

2

3.3 Rational points on conics over finite fields

We now turn to the problem of finding rational points on conics over finite fields. We begin
by proving that, unlike the situation over Q, there is always a rational point to find.

Theorem 3.4. Let C/Fq be a conic over a finite field of odd characteristic. Then C has a
rational point.

Proof. As shown in Lecture 2, by completing the square we can put C in the form ax2 +
by2 + cz2 = 0. If any of a, b, c is zero, say c, then (0 : 0 : 1) is a rational point on C, so
we now assume otherwise. The group F×

q is cyclic and has even order q − 1, so it contains
qexactly −1 qsquares. Therefore the set S = {y2 +1: y2 ∈ Fq} has cardinality (since it also2

includes 0), as does the set T = {−by2 − c : y ∈ Fq}, since it is a linear transformation
of S. Similarly, the set U = {ax2 : x ∈ Fq} has cardinality q+1 . The sets T and U cannot2
be disjoint, since the sum of their cardinalities is larger than Fq, so we must have some
−by20 − c ∈ T equal to some ax20 ∈ U , and (x0 : y0 : 1) is then a rational point on C.

Corollary 3.5. Let C/Fq be a conic over a finite field. Then one of the following holds

1. C is geometrically irreducible, isomorphic to P1, and has q + 1 rational points.

2. C is reducible over Fq, isomorphic to the union of two rational projective lines, and
has 2q + 1 rational points.

3. C is reducible over F2
q, but not over Fq, isomorphic over F2

q to the union of two
projective lines with a single rational point at their intersection.

In every case we have #C(Fq) ≡ 1 mod q.

Proof. If C is geometrically irreducible then we are in case 1 and the conclusion follows from
Theorem 2.3, since we know by Theorem 3.4 that C has a rational point. Otherwise, C must
be the product of two degree 1 curves (projective lines), which must intersect at at a single
point. If the lines can be defined over Fq then we are in case 2 and have 2(q+1)−1 = 2q+1
projective points and otherwise the lines must be defined over the quadratic extension Fq2 .
which is case 3. The non-trivial element of the Galois group Gal(Fq2/Fq) swaps the two
lines and must fix their intersection, which consequently lies in Fq.

Remark 3.6. Theorem 3.4 and Corollary 3.5 also hold in characteristic 2.

3.4 Root finding

Let f be a univariate polynomial over a finite field Fq. We now consider the problem of
how to find the roots of f that lie in Fq. This will allow us, in particular, to compute the
square root of an element a ∈ Fq by taking f(x) = x2 − a, which is a necessary ingredient
for finding rational points on conics over Fq, and also over Q. Recall that the critical step
of the descent algorithm we saw in Lecture 2 for finding a rational point on a conic over Q
required us to compute square roots modulo a square-free integer n; this is achieved by
computing square roots modulo each of the prime factors of n and applying the Chinese
remainder theorem (of course this requires us to compute the prime factorization of n, which
is actually the hard part).

No deterministic polynomial-time algorithm is know for root-finding over finite fields.
Indeed, even the special case of computing square roots modulo a prime is not known to

3

have a deterministic polynomial-time solution.1 But if we are prepared to use randomized
algorithms (which we are), we can quite solve this problem quite efficiently. The algorithm
we give here was originally proposed by Berlekamp for prime fields [1], and then refined
and extended by Rabin [3], whose presentation we follow here. This algorithm is a great
example of how randomness can be exploited in a number-theoretic setting. As we will see,
it is quite efficient, with an expected running time that is quasi-quadratic in the size of the
input.

3.4.1 Randomized algorithms

Randomized algorithms are typically classified as one of two types: Monte Carlo or Las
Vegas. Monte Carlo algorithms are randomized algorithms whose output may be incorrect,
depending on random choices made by the algorithm, but whose running time is bounded
by a function of its input size, independent of any random choices. The probability of error
is required to be less than 1/2 − ε, for some ε > 0, and can be made arbitrarily small be
running the algorithm repeatedly and using the output that occurs most often. In contrast,
a Las Vegas algorithm always produces a correct output, but its running time may depend
on random choices made by the algorithm and need not be bounded as a function of the
input size (but we do require its expected running time to be finite). As a trivial example,
consider an algorithm to compute a+ b that first flips a coin repeatedly until it gets a head
and then computes a + b and outputs the result. The running time of this algorithm may
be arbitrarily long, even when computing 1 + 1 = 2, but its expected running time is O(n),
where n is the size of the inputs (typically measured in bits).

Las Vegas algorithms are generally preferred, particularly in mathematical applications,
where we generally require provably correct results. Note that any Monte Carlo algorithm
whose output can be verified can always be converted to a Las Vegas algorithm (just run the
algorithm repeatedly until you get an answer that is verifiably correct). The root-finding
algorithm we present here is of the Las Vegas type.

3.4.2 Factoring with gcds

The roots of our polynomial f ∈ Fq[x] all lie in the algebraic closure Fq. The roots that
actually lie in Fq are distinguished by the fact that they are fixed by the Frobenius auto-
morphism x 7→ xq. It follows that the roots of f that lie in Fq are precisely those that are
also roots of the polynomial xq − x. Thus the polynomial

g = gcd(f, xq − x)

has the form
∏
i(x − αi), where the αi range over the distinct roots of f that lie in Fq.

If f has no roots in Fq then g will have degree 0, and otherwise we can reduce the problem
of finding a root of f to the problem of finding a root of g, a polynomial whose roots are
distinct and known to lie in Fq. Note that this already gives us a deterministic algorithm
to determine whether or not f actually has any roots in Fq, but in order to actually find
one we may need to factor g, and this is where we will use a randomized approach.

In order to compute gcd(f, xq−x) efficiently, one does not compute xq−x and then take
the gcd with f ; this would take time exponential in log q, whereas we want an algorithm
whose running time is polynomial in the size of f , which is proportional to deg f log q.

1If one assumes the extended Riemann Hypothesis, this and many other special cases of the root-finding
problem can be solved in polynomial time.

4

4

Instead, one computes xq mod f by exponentiating the polynomial x in the ring Fq[x]/(f),
whose elements are uniquely represented by polynomials of degree less than d = deg f .
Each multiplication in this ring involves the computation of a product in Fq[x] followed
by a reduction modulo f . This reduction is achieved using Euclidean division, and can
be accomplished within a constant factor of the time required by the multiplication. The
computation of xq is achieved using binary exponentiation (or some other efficient method of
exponentiation), where one performs a sequence of squarings and multiplications by x based
on the binary representation of q, and requires just O(log q) multiplications in Fq[x](f).
Once we have computed xq mod f , we subtract x and compute g = gcd(f, xq − x).

Assuming that q is odd (which we do), we may factor the polynomial xq − x as

xq − x = x(xs − 1)(xs + 1),

where s = (q − 1)/2. Ignoring the root 0 (which we can easily check separately), this
factorization splits F×

q precisely in half: the roots of xs − 1 are the elements of F×
q that

are quadratic residues, and the roots of xs + 1 are the elements of F×
q that are not. If we

compute
h = gcd(g, xs − 1),

we obtain a divisor of g whose roots are precisely the roots of g that are quadratic residues.
If we suppose that the roots of g are as likely as not to be quadratic residues, we should
expect the degree of h to be approximately half the degree of g, and so long as the degree
of h is strictly between 0 and deg g, one of h or g/h is a polynomial of degree at most half
the degree of g and whose roots are all roots of our original polynomial f .

To make further progress, and to obtain an algorithm that is guaranteed to work no
matter how the roots of g are distributed in Fq, we take a randomized approach. Rather
than using the fixed polynomial xs − 1, we consider random polynomials of the form

(x+ δ)s − 1,

where δ is uniformly distributed over Fq. We claim that if α and β are any two nonzero
roots of g, then with probability 1/2, exactly one of these is a root (x+ δ)s − 1. It follows
from this claim that so long as g has at least 2 distinct nonzero roots, the probability that
the polynomial h = gcd(g, (x+ δ)s + 1) is a proper divisor of g is at least 1/2.

Let us say that two elements α, β ∈ Fq are of different type if they are both nonzero and
αs = βs. Our claim is an immediate consequence of the following theorem from [3].

Theorem 3.7 (Rabin). For every pair of distinct α, β ∈ Fq we have

q 1
δ

−{ ∈ Fq : α+ δ and β + δ are of different type} = .
2

Proof. Consider the map φ(δ) = α+δ , defined for δ =β+δ −β. We claim that φ is a bijection
form the set Fq\{−β} to the set Fq\{1}. The sets are the same size, so we just need to
show surjectivity. Let γ ∈ F − {1}, then we wish to find a solution x = −β to γ = α+x

q .β+x

We have γ(β + x) = α + x which means x− γx = γβ − γβα. This yields x = −α , which is1−γ
not equal to −β, since α = β. Thus φ is surjective.

We now note that

φ(δ)s
(α+ δ)s

=
(β + δ)s

is −1 if and only if α+ δ and β + δ are of different type. The elements γ = φ(δ) for which
γs = −1 are precisely the non-residues in Fq\{1}, of which there are exactly (q − 1)/2.

5

6

6

6

6

5

We now give the algorithm.

Algorithm FindRoot(f)
Input: A polynomial f ∈ Fq[x].
Output: An element r ∈ Fq such that f(r) = 0, or null if no such r exists.

1. If f(0) = 0 then return 0.

2. Compute g = gcd(f, xq − x).

3. If deg g = 0 then return null.

4. While deg g > 1:

a. Pick a random δ ∈ Fq.
b. Compute h = gcd(g, (x+ δ)s − 1).

c. If 0 < deg h < deg g then replace g by h or g/h, whichever has lower degree.

5. Return r = −b/a, where g(x) = ax+ b.

It is clear that the output of the algorithm is always correct, since every root of the
polynomial g computed in step 2 is a root of f , and when g is updated in step 4c it is
always replaced by a proper divisor. We now consider its complexity.

It follows from Theorem 3.7 that the polynomial h computed in step 4b is a proper
divisor of g with probability at least 1/2, since g has at least two distinct nonzero roots
α, β ∈ Fq. Thus the expected number of iterations needed to obtain a proper factor h of
g is bounded by 2. The degree of h is at most half the degree of g, and the total cost of
computing all the polynomials h during step 4 is actually within a constant factor the cost
of computing g in step 2.

Using fast algorithms for multiplications and the gcd computation, the time to compute g
can be bounded by

O(M(d log q)(log q + log d)

bit operations, where M(b) denotes the time to multiply to b-bit integers and is asymptoti-
cally bounded by M(b) = O(b log b log log b) (in fact one can do slightly better). The details
of this complexity analysis and the efficient implementation of finite field arithmetic will not
concern us in this course, we refer the reader to [2] for a comprehensive treatment, or see
these notes for a brief overview. The key point is that this time complexity is polynomial
in d log q, in fact it is essentially quadratic, and in practice we can quite quickly find roots
of polynomials even over very large finite fields. same complexity bound, and the total
expected running time is O(M(nd)(n+ log d)).

The algorithm can easily be modified to find all the distinct roots of f , by modifying
step 4c to recursively find the roots of both h and g/h, this only increases the running time
by a factor of O(log d). Assuming that d is less than the charcteristic of Fq, one can easily
determine the multiplicity of each root of f : a root α of f occurs with multiplicity k if and
only if α is a root of f (k) but not a root of f (k+1), where f (k) denotes the kth derivative
of f . The time to perform this computation is negligible compared to the time to find the
distinct roots.

6

http://math.mit.edu/classes/18.783/LectureNotes4.pdf

3.5 Finding rational points on curves over finite fields

Now that we know how to find roots of univariate polynomials in finite fields (and in
particular, square roots), we can easily find a rational point on any conic over a finite field
(and enumerate all the rational points if we wish). As above, let us assume Fq has odd
characteristic, so we can put our conic C is diagonal form x2 + by2 + cz2 = 0. If C is
geometrically reducible then, as proved on Problem Set 1, it is singular and one of a, b, c
must be 0. So one of (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1) is a rational point on the curve, and in
the case that C is reducible over Fq we can determine the equations of the two lines whose
union forms C by computing square√ roots in F√ q; for example, if c = 0 we can compute
ax2 + by2 = (

√
ax+ −by)(

√
ax+ −by). It is then straight-forward to enumerate all the

rational points on C.
Now let us suppose that C is geometrically irreducible, in which case we must have

abc = 0. If any of −a/b,−b/c,−c/a is a square in Fq, then we can find a rational point
with one coordinate equal to 0 by computing a square-root. Otherwise we know that every
rational point (x0, y0, z0) ∈ C(Fq) satisfies x0y0z0 = 0, so we can assume z0 = 1. For each
of the q − 1 possible nonzero choices for y0, we get either 0 or 2 rational points on C,
depending on whether −(by20 + c)/a is a square or not. By Corollary .refcor:ffconicpts, We
know there are a total of q+ 1 rational points, so for exactly (q+ 1)/2 values of y0 we must
have −(by20 + c)/a square. Thus if we pick y0 ∈ Fq at random, we have a better than 50/50
chance of finding a rational point on C by computing −(by20 + c)/a. This gives us a Las
Vegas algorithm for finding a rational point on C whose expected running time is within
a constant factor of the time to compute a square-root

√
in Fq, which is quasi-quadratic in

log q. Once we have a rational point on our irreducible conic C, we can enumerate them all
using the parameterization we computed in Lecture 2.

Remark 3.8. The argument above applies more generally. Suppose we have a geometrically
irreducible plane curve C defined by a homogeneous polynomial f(x, y, z) of some fixed
degree d It follows from the Hasse-Weil bounds, which we will see later in course, that
#C(Fq) = q + O(

√
q). Assuming q � d, if we pick a random projective pair (y0 : z0) and

then attempt to find a root x0 of the univariate polynomial g(x) = f(x, y0, z0), we will
succeed with a probability that asymptotically approaches 1/d as q →∞. This yields a Las
Vegas algorithm for finding a rational point on C in time quasi-quadratic in log q.

References

[1] Elwyn R. Berlekamp, Factoring polynomials over large finite fields, Mathematics of
Computation 24 (1970), 713–735.

[2] Joachim von zur Gathen and Jurgen¨ Garhard, Modern Computer Algebra, third edition,
Cambridge University Press, 2013.

[3] Michael O. Rabin, Probabilistic algorithms in finite fields, SIAM Journal of Computing 9
(1980), 273–280.

[4] G. Rousseau, On the quadratic reciprocity law , Journal of the Australian Mathematical
Society (Series A) 51 (1991), 423–425.

7

6

6

7

http://www.ams.org/journals/mcom/1970-24-111/S0025-5718-1970-0276200-X/
http://ebooks.cambridge.org/ebook.jsf?bid=CBO9781139856065
http://epubs.siam.org/doi/abs/10.1137/0209024
http://dx.doi.org/10.1017/S1446788700034583

MIT OpenCourseWare
http://ocw.mit.edu

18.782 Introduction to Arithmetic Geometry
Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

8

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Quadratic reciprocity
	Finite fields
	Rational points on conics over finite fields
	Root finding
	Randomized algorithms
	Factoring with gcds

	Finding rational points on curves over finite fields

