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26.1 Genus 1 curves with no rational points

Let C/k be a (smooth, projective, geometrically irreducible) curve of genus 1 over a perfect
field k. Let n be the least positive integer for which Divk C contains an effective divisor D of
degree n (such divisors exist; take the pole divisor of any non-constant function in k(C), for
example). If C has a k-rational point, then n = 1 and C is an elliptic curve. We now consider
the case where C does not have a rational point, so n > 1. We have deg(D) = n > 2g−2 = 0,
so the Riemann-Roch theorem implies

`(D) = deg(D) + 1− g = n,

and for any positive integer m we have

`(mD) = deg(mD) + 1− g = mn.

We now analyze the situation for some specific values of n.

26.1.1 The case n = 2

We have `(D) = 2, so let {1, x} be a basis for L(D). Then `(2D) = 4, so in addition to
{1, x, x2}, the Riemann-Roch space L(2D) contains a fourth linearly independent function y.
We then have {1, x, x2, y, xy, x3} as a basis for L(3D), but L(4D) is an 8-dimensional vector
space containing the 9 functions {1, x, x2, y, xy, x3, x2y, x4, y2}, so there is a linear relation
among them, and this linear relation must have nonzero coefficient on both y2 and x4.
Assuming we are not in characteristic 2, we can complete the square in y to obtain an
equation of the form

y2 = f(x)

where f is a quartic polynomial over k. The polynomial f must be squarefree, and it
cannot have any k-rational roots (otherwise we would have a rational point). Note that the
homegenization of this equation is singular at (0 : 1 : 0), but its desingularization is a curve
in P3. Using the same argument as used on the problem set for hyperelliptic curves, one
can show that every curve defined by an equation of this form has genus 1.

26.1.2 The case n = 3

We have `(D) = 3, so let {1, x, y} be a basis for L(D). The 10 functions

{1, x, y, x2, xy, y2, x3, x2y, xy2, y3}

all lie in the 9-dimensional Riemann-Roch space L(3D), hence there is a linear relation
among them that defines a plane cubic curve without any rational points. Conversely,
every plane cubic curve has genus 1, since over a finite extension of k we can put the
curve in Weierstrass form, which we have already proved has genus 1 (recall that genus is
preserved under base extension of a perfect field). An example of a plane cubic curve with
no rational points was given on the problem set, and here is another one:

3x3 + 4y3 + 5z3 = 0.
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Unlike the example on the problem set, this curve has a rational point locally everywhere,
that is, over every completion of Q. As noted back in Lecture 3, every geometrically
irreducible plane curve has rational points modulo p for all sufficiently large primes p, and
in this example the only primes that we need to check are 2, 3, and 5; it is easy to check that
there are rational solutions modulo each of these primes, and modulo 33. Using Hensel’s
lemma, solutions modulo p (or p3, for p = 3) can be lifted to Qp, and there are clearly
solutions over R = Q∞

26.1.3 The case n = 4

We have `(D) = 4, so let {1, x, y, z} be a basis for L(D). The 10 functions

{1, x, y, z, x2, y2, z2, xy, xz, yz}

all lie in the 8-dimensional Riemann-Roch space L(2D), hence there are two independent
linear relations among them, each corresponding to a quadratic form in P3, and C is the
intersection of two quadric hypersurfaces (its clear that C is contained in the intersection,
and one can show that it is equal to the intersection by comparing degrees).

26.2 The case n > 4

One can continue in a similar fashion for n > 4; indeed, by a theorem of Lang and Tate,
over Q there are genus 1 curves that exhibit every possible value of n. But the situation
becomes quite complicated already for n = 5: we have {1, w, x, y, z} as a basis for L(D)
and in L(2D) we get 15 functions in a Riemann-Roch space of dimension 10.1

26.3 Twists of elliptic curves

A genus one curve C/k with no k-rational points is not an elliptic curve, but for some
finite extension L/k the set C(L) will be nonempty; thus if base-extend C to L, we obtain
an elliptic curve over L. We will show, this elliptic curve can be defined by a Weierstrass
equation whose coefficients actually lie in k, so it is also the base-extension of an elliptic
curve E/k. The curves E and C are clearly not isomorphic over k, since E has a k-rational
point and C does not, but they become isomorphic when we base-extend to L. In other
words, the isomorphism ϕ : C → E is defined over L, but not over k, so the distinguished
k-rational point O on E is the image of an L-rational point on C that is not defined over k.

Definition 26.1. Two varieties defined over a field k that are related by an isomorphism
¯defined over k are said to be twists of each other.

In order to characterize the curves that are twists of a given elliptic curve E/k, we
introduce the j-invariant. For simplicity, we will assume henceforth that char(k) = 2, 3, so
that we can put our elliptic curves in short Weierstrass form. But the j-invariant can also
be defined in terms of a general Weierstrass equation and except where we explicitly note
otherwise, all the theorems we will prove are true in any characteristic.

1Note that while every curve can be smoothly embedded in P3, this embedding will not necessarily be
defined over k. Over k, Pn−1 is the best we can do.
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Definition 26.2. Let E/k be an elliptic curve with Weierstrass equation y2 = x3+a4x+a6.
The j-invariant of E is

4a3

j(E) := 1728 4 .
4a3

4 + 27a2
6

Note that the denominator is always nonzero, since ∆(E) = −16(4a3 + 27a2
6) = 0.

Theorem 26.3. For every j ∈ k there exists an elliptic curve E/k with j(E) = j.

Proof. We define such an E/k via an equation y2 = x3 + a4x + a6 as follows. If j = 0, let
a4 = 0 and a6 = 1, and if j = 1728, let a4 = 1 and a6 = 0. Otherwise, let a4 = 3j(1728− j)
and a6 = 2j(1728− j)2. One can check that ∆(E) = 0 and j(E) = j in each case.

Theorem 26.4. Two elliptic curves defined over k have the same j-invariant if and only
¯if they are isomorphic over k.

Proof. For the forward implication, let y2 = x3 + a4x + a6 and y2 = x3 + a′4x + a′6 be
Weierstrass equations for elliptic curve E/k and E′/k, respectively, with j(E) = j(E′) = j.
If j = 0 then a4 = a′4 = 0, and we can make a6 = a′6 by a linear change of variables
defined over a suitable extension of k, hence E 'k̄ E′. If j = 1728 then a6 = a′6 = 0,
and we can similarly make a4 = a′4 via a change of variables over a suitable extension of k.
Otherwise, over a suitable extension of k we can make a4 and a′4 both equal to 1, and then
j(E) = j(E′)⇒ a6 = a′6. Thus in every case, j(E) = j(E′)

3
⇒ E 'k̄ E′.

For the reverse implication, we note that the cubic x +a4x+a6 is uniquely determined
by its roots, which are precisely the x-coordinates {x1, x2, x3} of the three points of order 2

¯in E(k). If E 'k̄ E′, then both curves can be embedded in P2 so that E[2] = E′[2], and
they will then have the same Weierstrass equation, hence the same j-invariant.

¯Corollary 26.5. Let C/k be a genus one curve and let O and O′ be any two points in C(k).
Then the elliptic curves (C,O) and (C,O′ ¯) over k have the same j-invariant.

Proof. The translation-by-O′ map on (C,O) is an isomorphism from (C,O) to (C,O′).

It follows from the corollary that the j-invariant of an elliptic curve (E,O) is independent
of the choice of O, it depends only on the curve E.

Definition 26.6. Let C/k be a curve of genus one. The j-invariant j(C) of C is the
¯ ¯j-invariant of the elliptic curve (C,O) over k, for any O ∈ C(k).

Theorem 26.7. Let C/k be a curve of genus one. Then j(C) ∈ k.

Proof. Let us pick O ∈ C(L), where L is some finite Galois extension L/k, and let E/L
be the elliptic curve (C,O). Then E is isomorphic to the base extension of C to L, so let
ϕ : C → E be the isomorphism (which is defined over L). For any σ ∈ Gal(L/k) there is an
isomorphism ϕσ : Cσ → Eσ. But C is defined over k, so Cσ = C, and therefore Eσ 'L E,
so j(Eσ) = j(E). But then j(E)σ = j(Eσ) = j(E) for all σ ∈ Gal(L/k), so j(E) ∈ k.

Corollary 26.8. Every genus one curve C/k is a twist of an elliptic curve E/k.

The corollary does not uniquely determine E, not even up to k-isomorphism; it is
possible for two elliptic curves defined over k to be twists without being isomorphic over k.
For example, for any d ∈ k× the elliptic curves defined by the Weierstrass equations

E : y2 = x3 + a4x+ a6
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and
Ed : y2 = x3 + d2a4x+ d3a6

have the same j-in√variant and are related by the isomorphism (x, y) 7→ (x/d, y/d3/2), which
is defined over k( d). But unless d ∈ k×2, they are not isomorphic over k; the curves E
and Ed are said to be quadratic twists of each other. More generally, we have the following.

Lemma 26.9. Let E : y2 = x3 + a 2
4x + a6 and E′ : y = x3 + a′4x + a′6 be elliptic curves

¯defined over k, with j(E) = j(E′). Then for some λ ∈ k× we have a′4 = λ4a4 and a′6 = λ6a6.
Moreover, the degree of k(λ)/k divides 2,4,6 when a4a6 = 0, a6 = 0, a4 = 0, respectively.

Proof. We first assume a4a6 = 0. From the definition of the j-invariant, we have

′
(4a 3 ′ ′

4 + 27a 2 3
6 )a4 = (4a3

4 + 27a2
6)a 3

4
′

4 + 27(a 2 ′3 2 3
6 /a4 ) = 4 + 27(a6/a4)
′
a 2

6 a
3
4 = a2 ′

6a
3

4 .

If we let λ =
√

(a′6a4)/(a6a′4) then√ we have a4
′ = λ4a4 and a′6 = λ6a6 as desired. When

a = 0 we may simply take λ = 4 6
6 a′4/a4, and when a4 = 0 we may take λ = a′6/a6.

We now want to distinguish (up to k-isomorphism) a particular elliptic curv

√
e E/k that

is a twist of a given genus one curve C/k. For any twist E/k of C/k we have an isomorphism
φ : C → ¯ ¯E that is defined over some extension L/k of k that lies in k. Every σ ∈ Gal(k/k)
defines an isomorphism φσ : Cσ → Eσ, and since C and E are both defined over k, we have
Cσ = C and Eσ = E, so in fact φσ is an isomorphism from C to E. The map

ϕσ := φσ ◦ φ−1

is then an isomorphism from E to itself. Every such isomorphism can be written as

ϕσ = τPσ ◦ εσ,

where Pσ = ϕσ(O) and εσ is an isomorphism that fixes the distinguished point O ∈ E(k).
Both τP and εσ are isomorphisms from E to itself, but εσ is also an isogeny, which is not
true of τPσ unless it is the identity map.

Definition 26.10. An automorphism of an elliptic curve E is an isomorphism E → E that
is also an isogeny. The set of automorphisms of E form a group Aut(E) under composition.

Theorem 26.11. Let k be a field of characteristic not equal to 2 or 3.2 The automorphism
group of an elliptic curve E/k is a cyclic group of order 6, 4, or 2, depending on whether
j(E) is equal to 0, 1728, or neither, respectively.

Proof. We may assume E/k is in short Weierstrass form. Any automorphism ε∗ of the
function field k(E) must preserve the Riemann-Roch space L(O), which has {1, x}, as a
basis, and also the Weierstrass coefficients a4 and a6. It follows from Lemma 26.9 that
ε∗(x) = λ−2x, where λ is a 6th, 4th, or 2nd root of unity, as j(E) = 0, 1728, or neither, and
we must then have ε∗(y) = λ−3y. This uniquely determines ε∗ and therefore ε.

2Over a field of characteristic 2 or 3 one can have automorphism groups of order 24 or 12, respectively;
this occurs precisely when j(E) = 0 = 1728.
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Theorem 26.12. Let C/k be a genus one curve. There is an elliptic curve E/k related
to C/k by an isomorphism φ : C → ¯E such that for every automorphism σ ∈ Gal(k/k) the
isomorphism ϕσ : E → E defined by ϕσ := φσ ◦ φ−1 is a translation-by-Pσ map for some
Pσ ∈ ¯E(k). The curve E is unique up to k-isomorphism.

Proof. To simplify matters we assume j(C) = 0, 1728 and char(k) = 2, 3. We first pick
¯a point Q0 ∈ C(k) and let E be the elliptic curve (C,Q0). We have j(E) = j(C) ∈ k,

so we can put E in short Weirestrass form with coefficients a4, a6 ∈ k, and we have an
isomorphism φ : C → E that sends Q0 to O := (0 : 1 : 0), but it need not be the case that

¯ϕσ is a translation-by-Pσ map for every σ ∈ Gal(k/k).
We can write each of the isomorphisms ϕσ = φσ ◦ φ−1 as

ϕσ = τPσ ◦ εσ,

where τPσ is translation by Pσ = Qσ0 −Q0, and εσ ∈ Aut(E).
Since j(E) = 0, 1728, we have #Aut(E) = 2. The group Aut(E) clearly contains

the identity map [1] and the negation map [−1], so Aut(E) = {[±1]}. The Galois group
¯Gal(k/k) acts on Aut(E) trivially, since both [1] and [−1] are defined over k.

¯If we apply an automorphism ρ ∈ Gal(k/k) to ϕσ we obtain

ϕρσ = (φσ)ρ ◦ (φ−1)ρ = (φρσ) ◦ φ−1 ◦ φ ◦ (φρ)−1 = ϕρσ ◦ ϕ−1
ρ .

Thus

ϕρσ = ϕρσ ◦ ϕρ = (τPσ ◦ εσ)ρ ◦ (τPρ ◦ ερ) = τ ρP +Pρ ◦ (ερσ ◦ ερ) = τ
σ Pσρ ◦ εσ ◦ ερ,

since ρ fixes εσ. But we also have ϕρσ = τPρσ ◦ερσ, thus ερσ = εσ ◦ερ = ερ ◦εσ, since Aut(E)
is commutative. The map σ → ¯εσ is thus a group homomorphism π : Gal(k/k)→ Aut(E).

¯If the kernel of π is all of Gal(k/k), then every εσ is trivial and ϕσ is translation-by-Pσ for
all σ ∈ ¯Gal(k/k), as desired.

¯Otherwise the kernel√ if π is an index-2 subgroup of Gal(k/k) whose fixed field is a
quadratic extension k( d)/k for some d ∈ k×. In this case let us consider the quadratic
twist Ed of E by d, as defined above, and let χd : E → Ed be the isomorphism (x, y)

3/2
7→

(x/d, y/d ). We then have an isomorphism φd = χd ◦ φ from C to Ed, and for each
¯σ ∈ Gal(k/k) an isomorphism

ϕ̃σ = φσd ◦ φ−1 = (χd ◦ φ)σ ◦ (χd ◦ φ)d
−1 = χσd ◦ φσ ◦ φ−1 ◦ χ−d

1 = χσd ◦ ϕσ ◦ χ−1.d

If εσ = [1] then σ fixes k(
√
d) and therefore χσd = χd and ϕ̃σ is just translation by χd(Pσ),

since in this case ϕσ = τPσ and√χd comm√utes group operations on E and Ed (since it is an
isogeny). If εσ = [−1] then σ( d) = − d and χσd = χd ◦ [−1], and now ϕσ = τPσ ◦ [−1].
We then have

ϕ̃σ = (χd ◦ [−1]) ◦ (τPσ ◦ [−1]) ◦ χ−1,d

and now ϕ̃σ is translation by χd(−Pσ). Thus in every case ϕ̃σ is a translation map, so
replacing E by Ed and φ by φd yields the desired result.

If φ′ : C → E′ is another isomorphism with the same property then after composing with
a suitable translation if necessary we can assumeφ′(Q0) is the point O = (0 : 1 : 0) on E′.
The map φ′ ◦φ−1 ¯is then an isomorphism from E to E′ that is fixed by every σ ∈ Gal(k/k),
hence defined over k, so E is unique up to k-isomorphism.
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Definition 26.13. The elliptic curve E/k given by Theorem 26.12 is the Jacobian of the
genus one curve C/k; it is determined only up to k-isomorphism, so we call any elliptic
curve that is k-isomorphic to E “the” Jacobian of C.

Note that if C is in fact an elliptic curve, then it is its own Jacobian.
We now want to give an alternative characterization of the Jacobian in terms of the

Picard group. We will show that the Jacobian of a genus one curve C/k is isomorphic to
Pic0C; more precisely, for every algebraic extension L/k we have E(L) ' Pic0

LC (as abelian
groups). This characterization of the Jacobian has the virtue that it applies to curves of
any genus; although we will not prove this, for each curve C/k of genus g there is an abelian
variety A/k of dimension g such that A(L) ' Pic0

LC for all algebraic extensions L/k.
In order to to prove this for curves of genus one, we first introduce the notion of a

principal homogeneous space.

26.4 Principal homogeneous spaces (torsors)

Recall that an action of a group G on a set S is a map G × S → S such that the identity
acts trivially and the action of gh is the same as the action of h followed by the action of g.
With the action written on the left, this means (gh)s = g(hs), or on the right, s(gh) = (sh)g,
where g, h ∈ G and s ∈ S. Below are various properties that group actions may have:

• faithful : no two elements ofG act the same way on every s ∈ S (∀s(gs = hs)⇒ g = h).

• free: no two elements of G act in the same way on any s ∈ S (∃s(gs = hs)⇒ g = h).

• transitive: for every s, t ∈ S there is a g ∈ G such that gs = t.

• regular : free and transitive; for all s, t ∈ S there is a unique g ∈ G with gs = t.

Note that free implies faithful, so long as S = ∅.

Definition 26.14. A nonempty set S equipped with a regular group action by an abelian
group G is a principal homogeneous space for G, also known as a G-torsor.

Since a G-torsor S is being acted upon by an abelian group, it is customary to write
the action additively on the right. So for any s ∈ S and g ∈ G we write s+ g to denote the
action of g on S (which is another element t of S). Conversely, for any s, t ∈ S we write
t− s to denote the unique g ∈ G for which t = s+ g.

As a trivial example of a G-torsor, we can take G acting on itself. More generally,
any G-torsor S is necessarily in bijection with G. In fact, we can make S into a group
isomorphic to G as follows: pick any element s0 ∈ S, and define the bijection φ : G → S
by φ(g) = s0 + g. Declaring φ to be a group homomorphism makes S into a group; the
group operation is given by φ(g) + φ(h) = φ(g+ h), and φ is an isomorphism with the map
s 7→ s− s0 as its inverse.

A good analogy for the relationship between G and S is the relationship between a vector
space and affine space. A G-torsor is effectively a group with no distinguished identity
element, just as affine space is effectively a vector space with no distinguished origin.

6

6



26.5 Principal homogeneous spaces of elliptic curves

The notion of a G-torsor S defined above is entirely generic; we now specialize to the case
¯ ¯where G = E(k) is the group of points on an elliptic curve E/k and S = C(k) is the set of

points on a curve C/k. In this setting we add the additional requirement that the action is
given by a morphism of varieties. More formally, we make the following definition.

Definition 26.15. Let E/k be an elliptic curve. A principal homogeneous space for E (or
¯ ¯E-torsor), is a genus one curve C/k such that the set C(k) is an E(k)-torsor and the map

C × E → C defined by (Q,P ) 7→ Q+ P is a morphism of varieties that is defined over k.

Note that if C/k is an E-torsor and L/k is any algebraic extension over which C has
an L-rational point P , then the set C(L) is an E(L)-torsor and the elliptic curves (E,O)
and (C,P ) are isomorphic over L via the translation-by-P map. In particular, we always
have j(C) = j(E). If C has a k-rational point then C and E are isomorphic over k, and in
general E is the Jacobian of C, as we now prove.

Theorem 26.16. Let C/k be a curve of genus one and let E/k be an elliptic curve. Then C
is an E-torsor if and only if E is the Jacobian of C.

Proof. Suppose C is an E-torsor, let O be the distinguished point of E and pick any
Q0 ∈ ¯C(k). Then we have an isomorphism φ : C → E that sends to Q0 to O defined by
Q 7→ Q −Q0, where Q − ¯Q0 denotes the unique element of E(k) that sends Q to Q0. For
any σ ∈ ¯Gal(k/k), the map ϕσ = φσ ◦ φ−1 is given by P

σ
7→ (Q0 + P ) − Qσ0 , and is thus

translation by Pσ = Q0 −Q0 . So E is the Jacobian of C (up to k-isomorphism).
Now suppose E is the Jacobian of C and let φ : C → E be the isomorphism from C to E

given by Theorem 26.12. Then P ∈ ¯E(k) acts on Q ∈ ¯C(k) via Q 7→ φ−1(φ(Q) + P ), and
¯this action is regular, since φ and translation-by-P are both isomorphisms. Thus C(k) is

¯an E(k)-torsor, and the map µ : C ×E → C given by the action of E is clearly a morphism
of varieties, since both φ and the group operation E × E → E are.

¯To show that µ is defined over k, we check that µσ = µ for all σ ∈ Gal(k/k). The group
operation E ×E → E is defined over k, hence invariant under the action of σ, and for any
Q ∈ C and P ∈ E we have

µσ(Q,P ) = (φ−1)σ(φσ(Q) + P )

= (φ−1)σ((ϕσ ◦ φ)(Q) + P )

= (φ−1)σ(φ(Q) + Pσ + P )

= φ−1(φ(Q) + Pσ + P − Pσ)

= φ−1(φ(Q) + P )

= µ(Q,P ),

where we have used ϕσ = φσ ◦φ−1 to derive φσ = ϕσ ◦φ and (φ−1)σ = (φσ)−1 = φ−1 ◦ϕ−1
σ ,

and applied ϕσ(P ) = P + Pσ and ϕ−1
σ (P ) = P − Pσ.

¯ ¯Theorem 26.17. Let C/k be an E-torsor and let Q ∈ C(k). The map π : Div0
0 ¯ Ck → E(k)

defined by ∑
niPi

i

7→ n(Pi
i

−Q0)

is a surjective homorphism whose kernel consists

∑
of the principal divisors, and it is indepen-

¯dent of the choice of Q0. Moreover, for any extension L/k in k the map π commutes with
¯every element of Gal(k/L) and therefore induces a canonical isomorphism Pic0

LC ' E(L).
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Note that in the definition of π, the sum on the LHS is a formal sum denoting a divisor,
¯while the sum on the RHS is addition in the abelian group E(k), where each term Pi Q0

¯
−

denotes the unique element of E(k) whose action sends Q0 to Pi.

Proof. The map π is clearly a group homomorphism. To see that it is surjective, for any
¯point P ∈ E(k), if we let D = (Q0 + P )−Q0 ∈ Div0C then

π(D) = ((Q0 + P )−Q0)− (Q0 −Q0) = P.

If π(D) = π( niPi) = O for some D ∈ Div0
¯ C, then the divisor ) in
k i ni(Pi − Q0

div0
¯(E) sums to O

∑
, hence is linearly equivalent to 0 and therefore a principal divisor. Since

k
¯ ¯k(C) = k(E), the same is true of D. Conversely, if D

∑
∈ div0

¯ C is principal, so is the
k

corresponding divisor in Div0
¯ E, and therefore π(D) = O. Thus the kernel of π is precisely
k

¯the group of principal divisors, hence∑π induces an isomorphism Pic0
k̄
→ E(k).

Now let Q1 ∈ ¯C(k) and define π′( niPi) =
∑
ni(Pi −Q1). Then

π(D)− π′(D) =
∑

ni((Pi −Q0)− (Pi
i

−Q1)) =
∑

ni(Q1 −Q0) = O,

since
∑
ni = deg(D) = 0, thus π′ =∑π and π is independent of the choice of Q0.

For any σ ∈ ¯Gal(k/k) and D = niPi ∈ Div0
¯ C we have
k

π(D)σ =
∑

ni(P
σ
i

i

−Qσ0 ) = π(Dσ).

¯It follows that D ∈ Div0
LC if and only if π(D) ∈ E(L), for any extension L/k in k, thus π

¯induces an isomorphism Pic0
LC → E(L) for every L/k in k.

26.6 The Weil-Châtelet group

Definition 26.18. Let E/k be an elliptic curve. Two E-torsors C/k and C ′/k are equivalent
if there is an isomorphism θ : C → C ′ defined over k that is compatible with the action of E.
This means that

θ(Q+ P ) = θ(Q) + P

holds for all Q ∈ ¯C(k) and P ∈ ¯E(k). The Weil-Châtelet group WC(E/k) is the set of
equivalence classes of E-torsors under this equivalence relation.

The equivalence class of E is simply the set of elliptic curves that are k-isomorphic to E;
this is the trivial class of WC(E/k), and it acts as the identity element under the group
operation that we will define shortly.

Lemma 26.19. If θ : C → C ′ is an equivalence of E-torsors then

θ(P )− θ(Q) = P −Q

for all P,Q ∈ C. Conversely, if θ : C → C ′ is a k-isomorphism for which the above holds,
then θ is an equivalence of E-torsors.
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Proof. If θ is an equivalence of E-torsors, then

θ(P )− θ(Q) = θ(P ) + (Q− P )− θ(Q) + P −Q
= θ(P + (Q− P ))− θ(Q) + P −Q
= P −Q.

Conversely, if θ(P ) − θ(Q) = P − Q for all P,Q ∈ ¯C, then for any R ∈ E(k) we have
θ(Q + R) − θ(Q) = (Q + R) − Q = R, and therefore θ(Q + R) = θ(Q) + R for all Q ∈ C

¯and R ∈ E(k), so θ is an equivalence of E-torsors.

Recall from the proof of Theorems 26.12 and 26.16 that if C/k is an E-torsor (and
therefore E is the Jacobian of C) then each σ ∈ ¯Gal(k/k) determines an isomorphism

→ σ− ∈ ¯ϕσ : E E that is a translation-by-Pσ map, where Pσ = Q0 Q0 for some fixed Q0 C(k).
¯So we have a map α : Gal(k/k)→ ¯ ¯E(k) defined by α(σ) = Qσ0−Q0. For any σ, τ ∈ Gal(k/k)

we have

(τσ)
α(σ)τ = (Qσ0 −Q )τ0 = Q0 −Qτ0 = (Qτσ0 −Q τ

0)− (Q0 −Q0) = α(τσ)− α(τ),

thus
α(τσ) = α(τ) + α(σ)τ ,

and this holds for any choice of Q0 used to define α. If α(σ)τ = α(σ) then α is a group
homomorphism, but in general this is not the case; the map α is known as a crossed
homomorphism.

¯Definition 26.20. A map α : Gal(k/k)→ ¯E(k) that satisfies

α(τσ) = α(τ) + α(σ)τ

for all σ, τ ∈ ¯Gal(k/k) is called a crossed homomorphism.

If α and β are two crossed homomorphism then the map (α + β)(σ) = α(σ) + β(σ) is
also, since

(α+ β)(τσ) = α(τσ) + β(τσ) = α(τ) + α(σ)τ + β(τ) + β(σ)τ = (α+ β)(τ) + (α+ β)(σ)τ ,

and addition of crossed homomorphism is clearly associative. The difference of two crossed
homomorphisms is similarly a crossed homomorphism, and the map that sends every ele-

¯ment of Gal(k/k) to the distinguished point O acts as an additive identity. Thus the set of
¯ ¯all crossed homomorphisms from Gal(k/k) to E(k) form an abelian group.

The crossed homomorphisms of the form σ 7→ Qσ0 −Q0 that arise from an E-torsor C/k
with Q0 ∈ ¯C(k) have the property that there is a finite normal extension L/k such that

¯Gal(k/L) = α−1(O); take L to be the normal closure of k(Q ).30 Crossed homomorphisms
with this property are said to be continuous.4 Sums and negations of continuous crossed
homomorphisms are clearly continuous, so they form a subgroup.

Now let us consider what happens when we pick a point Q1 ∈ ¯C(k) different from Q0.
Let α0 be the crossed homomorphism σ 7→ Qσ0−Q0 and let α1 be the crossed homomorphism
σ 7→ Qσ1 −Q1. Then their difference is defined by

α1(σ)− α0(σ) = (Qσ1 −Q1)− (Qσ0 −Q0) = (Q1 −Q0)σ − (Q1 −Q0).

3Recall that we assume k to be perfect.
4 ¯ ¯If we give Gal(k/k) the Krull topology and E(k) the discrete topology this corresponds to the usual

notion of continuity.
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The crossed homomorphism α1−α0 is defined in terms of Q1−Q0 which is actually a point
¯ ¯ ¯ ¯on E(k), rather than C(k). This is also true if we choose Q0 ∈ C0(k) and Q1 ∈ C1(k) where

C0 and C1 are two equivalent E-torsors.

Definition 26.21. Crossed homomorphisms of the form σ 7→ P σ − P with P ∈ ¯E(k) are
principal. The principal crossed homomorphism form a subgroup, as do the continuous
principal crossed homomorphisms.

Given our notion of equivalence for E-torsors, we do not wish to distinguish between
principal crossed homomorphisms. This leads to the following definition.

Definition 26.22. Let E/k be an elliptic curve. The group of continuous crossed homo-
morphisms of E/k modulo its subgroup of principal crossed homomorphisms is the first

¯Galois-cohomology group of E(k). It is denoted by

H1 ¯ ¯(Gal(k/k), E(k)).

For the sake of brevity we may also write H1(k,E).

¯Remark 26.23. More generally, if M is any abelian group on which Gal(k/k) acts, one
can define Galois cohomology groups Hn(k,M) for each non-negative integer n. The group
H0 ¯(k,M) is simply the subgroup of M fixed by Gal(k/k); in our setting H0(k,E) = E(k).

We now use the group H1(k,E) to define a group operation on the WC(E/k).

Theorem 26.24. Let E/k be an elliptic curve. There is a bijection between the Weil-
Châtelet group WC(E/k) of E and its first cohomology group H1(k,E).

Proof. We have already defined a map from WC(E/k) to H1(k,E); given an E-torsor C/k
¯that represents an equivalence class in WC(E/k), we may pick any point Q0 ∈ C(k) to

get a continuous crossed homomorphism σ 7→ Qσ0 −Q0 that is uniquely determined modulo
prinicipal crossed homomorphisms, hence it represents an element of H1(k,E). We just
need to show that this map is injective and surjective.

¯We first prove that it is injective. Let C1/k and C2/k be E-torsors, pick Q1 ∈ C1(k) and
Q2 ∈ ¯C2(k), and suppose that the crossed homomorphism σ 7→ Qσ1 −Q1 and σ 7→ Qσ2

1
−Q2

are equivalent in H (k,E). Then their difference is a principal crossed homomorphism
σ 7→ P σ − P , for some P ∈ ¯E(k). Thus we have

(Qσ1 −Q1)− (Qσ2 −Q2) = P σ − P

∈ ¯for all σ Gal(k/k). Now define the map θ : C1 → C2 by

θ(Q) = Q1 + (Q−Q2)− P.

It is clear that θ is an isomorphism, since C1 and C2 are both E-torsors, and it is defined
over k, since for any σ ∈ ¯Gal(k/k) we have

θ(Q)σ = Qσ1 + (Qσ −Qσ2 )− P σ

= Q1 − (Qσ −Q2)− P + (Qσ1 −Q1)− (Qσ2 −Q2)
σ

− (P σ − P )

= Q1 − (Q −Q2)− P
= θ(Qσ)
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Thus C1 and C2 lie in the same equivalence class in WC(E/k); this prove injectivity.
For surjectivity, let α be a continuous crossed homomorphism that represents an element

¯ ¯ ¯of H1(k,E). We now define an action of Gal(k/k) on the function field k(E) = k(x, y) as
follows: for any σ ∈ ¯Gal(k/k), the elements xσ and yσ are given by

(x, y)σ = (xσ, yσ) := (x, y) + α(σ),

where the + indicates that we apply the algebraic formulas defining the group operation on
¯E(k) working with points in P2 ¯(k(E)). To check that this defines a group action, we note

¯that the identity clearly acts trivially, and for any σ, τ ∈ Gal(k/k) we have

(x, y)τσ = (x, y) + α(τσ) = (x, y) + α(τ) + α(σ)τ = ((x, y) + α(σ))τ + α(τ) = ((x, y)σ)τ .

The fixed field of this action is is the function field of a curve C that is defined over k and
¯isomorphic to E over k. By construction, there is an isomorphism φ : C → E such that for

any σ ∈ ¯Gal(k/k) the automorphism ϕσ = φσ ◦ φ−1 is a translation by Pσ = −α(σ), thus
E is the Jacobian of C, by Theorem 26.12, and therefore an E-torsor, by Theorem 26.16.
Thus C represents an equivalence class of WC(E/k), and if we pick Q0 = φ−1(O) then

Qσ0 −Q0 = (φσ)−1(O)− φ−1(O)

= φ−1(O + α(σ))− φ−1(O)

= α(σ),

So the class of α in H1(k,E) is the image of the class of C in WC(E/k).

The bijection given by the theorem maps the trivial class of WC(E/k) to the identity
element of H1(k,E), thus we can define a group operation on WC(E/k) via this bijection.

Corollary 26.25. The Weil-Châtelet group WC(E/k) is isomorphic to the group H1(k,E).

Definition 26.26. Let E/k be an elliptic curve. The Tate-Shafarevich group X(E) is the
kernel of the map

WC(E/k)→
∏

WC(Ep/kp),
p

where kp ranges over the completions of k and Ep denotes the base extension of E to kp.

The Tate-Shafarevich group contains precisely the equivalence classes in WC(E/k) that
are locally trivial everywhere. These are the classes of curves C/k with Jacobian E/k that
have a kp-rational point at every completion kp.

Definition 26.27. A curve C/k satisfies the local-global principle (or Hasse principle) if
either C(k) = ∅ or C(kp) = ∅ for some completion kp.

Theorem 26.28. Let C/k be a genus one curve with Jacobian E/k. A genus one curve
C/k fails the local-global principle if and only if it represents a non-trivial element of X(E).
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