
18.783 Elliptic Curves
Lecture 3

Andrew Sutherland

February 24, 2021

1

Representing finite fields

For Fp ' Z/pZ we use integers in [0, p − 1] denoting elements of Z/pZ.

For Fq ' Fd ' Fp[x]/(xd) we use vectors in Fd denoting elements of Fp[x]/(xd),p p

which can view as elements of Fp[x]/(f) for some irreducible f 2 Fp[x] of degree d.
It does not matter which f we pick, but some choices are better than others.

This reduces all computation in finite fields to integer and polynomial arithmetic.

We should note that there are other choices. If F× = hri (so r is a primitive root), we q
ecould use 0 to denote 0 and e 2 [1, q − 1] to denote r .

2

Integer arithmetic
Complexity of ring operations on n-bit integers:

addition/subtraction O(n)
multiplication (FFT) O(n log n)

To multiply polynomials in Fp[x] we use Kronecker substitution.
Let f̂ 2 Z[x] denote the lift of f 2 Fp[x] to Z[x]. We compute h = fg 2 Fp[x] via

ĥ(2m) = f̂(2m)ĝ(2m)

with m � 2 lg p + lg(d + 1), where d := deg f . The kth coeÿcient of h can be
obtained by extracting the kth block of m bits from ĥ(2m) and reducing it modulo p.

All ring operations in Fp[x] can thus be reduced to ring operations in Z, provided we
know how to reduce integers modulo p.

3

Euclidean division

For positive integers a, b we want to compute the unique q, r � 0 for which

a = bq + r (0 � r < b),

that is, q = ba/bc and r = a mod b. Recall Newton’s method to find a root of f(x):

f(xi)
xi+1 := xi −

f 0(xi)
.

To compute c ˇ 1/b, we apply this to f(x) = 1/x − b, using the Newton iteration

f(xi) 1 − bxixi+1 = xi − = xi − = 2xi − bxi
2 .

f 0(xi) − 12xi

We can then compute q = bcac and r = a − bq.
4

Euclidean division

As an example, let us approximate 1/b = 1/123456789 working in base 10 (in an
actual implementation would use base 2, or base 2w, where w is the word size).

x0 = 1 × 10−8

x1 = 2(1 × 10−8) − (1.2 × 108)(1 × 10−8)2

= 0.80 × 10−8

x2 = 2(0.80 × 10−8) − (1.234 × 108)(0.80 × 10−8)2

= 0.8102 × 10−8

x3 = 2(0.8102 × 10−8) − (1.2345678 × 108)(0.8102 × 10−8)2

= 0.81000002 × 10−8 .

We double the precision we are using at each step, and each xi is correct up to an error
in its last decimal place. The value x3 suÿces to correctly compute ba/bc for a � 1015.

5

Euclidean division
There is an analogous algorithm for Euclidean division in Fp[x].
Given a, b 2 Fp[x] with b monic we con compute the unique q, r 2 Fp[x] for which

a = bq + r (deg r < deg b).

See the lecture notes for details. In both cases if the divisor b is fixed we can save time
by precomputing c ˇ 1/b (as on Problem Set 1).

Theorem
Let q = pd be a prime power and assume log d = O(log p) or p = O(1).
The time to multiply two elements in Fq is O(M(n)) = O(n log n), where n = log q.

Under a widely believed conjecture we know that multiplication in Fq takes time
O(n log n) (but not necessarily O(M(n))), without any assumptions about p and d.

6

Inverting elements of a finite field
Given integers a > b > 0 the (extended) Euclidean algorithm computes s, t 2 Z with

gcd(a, b) = as + bt (|s| � b/ gcd(a, b), |t| � a/ gcd(a, b))

If a = p is prime, then ps + bt = 1 and t � b−1 mod p with t 2 [0, p − 1].
The Euclidean algorithm works in any Euclidean ring, including Fp[x].

But note that Fp[x] has a larger unit group than Z and gcd(a, b) is defined only units.
More formally, gcd(a, b) = (a, b) = (c) is a principal ideal. In Z there is a unique
positive choice of c, while in Fp[x] there is a unique monic choice of c.

The fast Euclidean algorithm (see lecture notes) yields the following theorem.

Theorem
Let q = pd be a prime power and assume log d = O(log p) or p = O(1).
The time to invert an element of F× is O(M(n) log n) = O(n log2 n), where n = log q.q

7

Exponentiation (also known as scalar multiplication)
aGiven a group element g and a positive integer a we want to compute g = gg · · · g

(or if we write the group operation additively, ag = g + g + · · · + g).

We can achieve this using a “square-and-multiply” (or “double-and-add”) algorithm:
n1. Let a =

P
i=0 2iai and initialize h to g.

2. For i from n − 1 down to 0:
a. Replace h with h2

b. If ai = 1 then replace h with hg. P n−iAt the end of the ith loop we have h = gb with b = j=0 2j ai+j .

aThis allows us to compute g using at most 2n = O(n) group operations. The leading
constant 2 can be improved; you will have a chance to explore this on Problem Set 2.

For F× each group operation takes time O(M(n)), and for a � q − 1 the time to q
acompute g is O(nM(n)) = O(n2 log n). Note: we can always reduce a modulo q − 1.

8

MIT OpenCourseWare
https://ocw.mit.edu

18.783 / 18.7831 Elliptic Curves
Spring 2021

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

9

https://ocw.mit.edu/terms
https://ocw.mit.edu

	cover_s2.pdf
	Blank Page

