18.783 Elliptic Curves
Lecture 3

Andrew Sutherland

February 24, 2021

Representing finite fields

For I, ~ Z/pZ we use integers in [0, p — 1] denoting elements of Z/pZ.

For F, ~]Fg ~ Fp[z]/(z?) we use vectors in IFg denoting elements of F,[z]/(x%),
which can view as elements of F,[x]/(f) for some irreducible f € F,,[z] of degree d.
It does not matter which f we pick, but some choices are better than others.

This reduces all computation in finite fields to integer and polynomial arithmetic.

We should note that there are other choices. If F* = (r) (so is a primitive root), we
could use 0 to denote 0 and e € [1,q — 1] to denote r°.

Integer arithmetic

Complexity of ring operations on n-bit integers:

addition/subtraction O(n)
multiplication (FFT) O(nlogn)

To multiply polynomials in Fp[z] we use Kronecker substitution.
Let f € Z[z] denote the lift of f € Fplz] to Z]z]. We compute h = fg € F)[z] via

N A

h(2™) = f(2™)9(2™)

with m > 21gp +1g(d + 1), where d := deg f. The kth coefficient of h can be
obtained by extracting the kth block of m bits from h(2™) and reducing it modulo p.

All ring operations in Fy[z] can thus be reduced to ring operations in Z, provided we
know how to reduce integers modulo p.

Euclidean division

For positive integers a,b we want to compute the unique ¢, > 0 for which
a=bg+r (0 <r<b),
that is, ¢ = |a/b| and r = a mod b. Recall Newton's method to find a root of f(z):

I ()
+1 - 7 f/($z)

To compute ¢ ~ 1/b, we apply this to f(x) = 1/x — b, using the Newton iteration

1

flzi) w0

1+ 7 f’(:pz)) _;12
i

= 2z; — ba?.

We can then compute ¢ = |ca] and r = a — bq.

Euclidean division

As an example, let us approximate 1/b = 1/123456789 working in base 10 (in an
actual implementation would use base 2, or base 2, where w is the word size).

rg = 1x1078

r1 = 2(1x107%) — (1.2 x 10%)(1 x 1078)?
= 0.80x 1078

Ty = 2(0.80 x 1078) — (1.234 x 10%)(0.80 x 1078)?
= 0.8102x 1078

3 = 2(0.8102 x 107%) — (1.2345678 x 10%)(0.8102 x 1078)?
= 0.81000002 x 1075,

We double the precision we are using at each step, and each z; is correct up to an error
in its last decimal place. The value x3 suffices to correctly compute [a/b| for a < 10,

Euclidean division

There is an analogous algorithm for Euclidean division in F[z].
Given a,b € F,[x] with b monic we con compute the unique g, € Fp[z] for which

a=bqg+r (degr < degb).

See the lecture notes for details. In both cases if the divisor b is fixed we can save time
by precomputing ¢ ~ 1/b (as on Problem Set 1).

Theorem

Let ¢ = p? be a prime power and assume logd = O(log p) or p = O(1).
The time to multiply two elements in Fy is O(M(n)) = O(nlogn), where n = logq.

Under a widely believed conjecture we know that multiplication in I, takes time
O(nlogn) (but not necessarily O(M(n))), without any assumptions about p and d.

Inverting elements of a finite field
Given integers a > b > 0 the (extended) Euclidean algorithm computes s,t € Z with
ged(a,b) =as+ bt (|s| <b/ged(a,b), [t| < a/ged(a,b))
If @ = p is prime, then ps + bt = 1 and t = b=! mod p with ¢t € [0,p — 1].
The Euclidean algorithm works in any Euclidean ring, including I, [x].

But note that F,[z] has a larger unit group than Z and gcd(a, b) is defined only units.
More formally, gcd(a, b) = (a,b) = (c) is a principal ideal. In Z there is a unique
positive choice of ¢, while in Fy,[z] there is a unique monic choice of c.

The fast Euclidean algorithm (see lecture notes) yields the following theorem.
Theorem

Let ¢ = p® be a prime power and assume logd = O(logp) or p = O(1).
The time to invert an element of F* is O(M(n)logn) = O(n log®n), where n = log q.

Exponentiation (also known as scalar multiplication)

Given a group element g and a positive integer a we want to compute ¢g* = gg---¢g
(or if we write the group operation additively, ag =g+ g+ ---+ g).

We can achieve this using a “square-and-multiply” (or “double-and-add") algorithm:
1. Let a = 31 2%a; and initialize h to g.
2. For ¢ from n — 1 down to 0:

a. Replace h with h?
b. If a; = 1 then replace h with hg.

At the end of the ith loop we have h = g” with b = Z?:_é 2ai.

This allows us to compute g* using at most 2n = O(n) group operations. The leading
constant 2 can be improved; you will have a chance to explore this on Problem Set 2.

For ;' each group operation takes time O(M(n)), and for a < ¢ — 1 the time to
compute g% is O(nM(n)) = O(n?logn). Note: we can always reduce a modulo q — 1.

MIT OpenCourseWare
https://ocw.mit.edu

18.783 / 18.7831 Elliptic Curves
Spring 2021

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu

	cover_s2.pdf
	Blank Page

