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21 Ring class fields and the CM method

Let O be an imaginary quadratic order with discriminant D, and let

EllO(C) := {j(E) ∈ C : End(E) = O}.

In the previous lecture we proved that the Hilbert class polynomial

HD(X) := HO(X) :=
∏

j(E)∈EllO(C)

(
X − j(E)

)
has integer coefficients. We then defined L to be the splitting field of HD(X) over the field
K = Q(

√
D), and showed that there is an injective group homomorphism

Ψ: Gal(L/K) ↪→ cl(O)

that commutes with the group actions of Gal(L/K) and cl(O) on the set EllO(C) = EllO(L)
of roots of HD(X). To complete the proof of the the First Main Theorem of Complex
Multiplication, which asserts that Ψ is an isomorphism, we just need to show that Ψ is
surjective, equivalently, that HD(X) is irreducible over K.

To do this we need to introduce the Artin map (named after Emil Artin), which allows us
to associate to each O-ideal p of prime norm satisfying certain constraints an automorphism
σp ∈ Gal(L/K) whose action on EllO(C) corresponds to the action of [p]. In order to define
the Artin map we need to briefly delve into a bit of algebraic number theory. We will restrict
our attention to the absolute minimum that we need. Those who would like to know more
may wish to consult one of [7, 8] or these 18.785 lecture notes; those who do not may treat
the Artin map as a black box.

21.1 The Artin map

Let L be a finite Galois extension of a number field K. Nonzero prime ideals p of the ring
of integers OK are called “primes of K”.1 The OL-ideal pOL is typically not a prime ideal,
but it can be uniquely factored as

pOL = q1 · · · qn

where the qi are not-necessarily-distinct primes of L (prime ideals of OL) that are character-
ized by the property qi∩OK = p. The primes qi are said to “lie above” the prime p, and it is
standard to write qi|p as shorthand for qi|pOL and use {q|p} to denote the set {q1, . . . , qn}.

We should note that the ring OL is typically not a unique factorization domain, but it
is a Dedekind domain, and this implies unique factorization of ideals.2

When the qi are distinct, we say that p is unramified in L, which is true for all but
finitely many primes p. If we apply an automorphism σ ∈ Gal(L/K) to both sides of the
equation above, the LHS must remain the same: σ fixes every element of p ⊆ K, and it
maps algebraic integers to algebraic integers, so it preserves the set OL. For the RHS, it is

1This is an abuse of terminology: as a ring, K does not have any nonzero prime ideals (it is a field).
2There are several equivalent definitions of Dedekind domains: it is an integral domain with unique

factorization of ideals, and it also an integral domain in which every nonzero fractional ideal is invertible.
We have seen that the latter applies to rings of integers in number fields (at least for imaginary quadratic
fields), so the former must as well (this equivalence is a standard result from commutative algebra).

Lecture by Andrew Sutherland

https://ocw.mit.edu/courses/mathematics/18-785-number-theory-i-fall-2019/lecture-notes/MIT18_785F19_lec7.pdf


clear that σ must map OL-ideals to OL-ideals, and since the qi are all prime ideals, σ must
permute them. Thus the Galois group Gal(L/K) acts on the set {q1, . . . , qn} = {q|p}; one
can show that this action is transitive, but it is typically not faithful.

For each q|p, the stabilizer of q under this action is a subgroup

Dq := {σ ∈ Gal(L/K) : qσ = q} ⊆ Gal(L/K)

known as the decomposition group of q. Each σ ∈ Dq fixes q and therefore induces an
automorphism σ̄ of the quotient Fq := OL/q defined by σ̄(x̄) = σ(x), where x 7→ x̄ is the
quotient map OL → OL/q. The quotient OL/q is a field (in a Dedekind domain every
nonzero prime ideal is maximal), and q has finite index Nq := [OL : q] in OL, so it is a finite
field of cardinality Nq (which must be a prime power). The image of OK under the quotient
map OL → OL/q = Fq is OK/(q ∩ OK) = OK/p = Fp, thus the finite field Fp is a subfield
of Fq (and necessarily has the same characteristic). It follows that σ̄ ∈ Gal(Fq/Fp), and we
have a group homomorphism

Dq → Gal(Fq/Fp)

σ 7→ σ̄.

This homomorphism is surjective [8, Prop. I.9.4], and when p is unramified it is also injective
[8, Prop. I.9.5], and therefore an isomorphism, which we now assume.

The group Gal(Fq/Fp) is cyclic, generated by the Frobenius automorphism x → xNp,
where Np = [OK : p] = #Fp. The unique σq ∈ Dq for which σ̄q is the Frobenius automor-
phism is called the Frobenius element of Gal(L/K) at q. In general the Frobenius element
σq depends on our choice of q, but the σq for q|p are all conjugate, since if τ(qi) = qj then
we must have σqj = τ−1σqiτ . This implies that the σ̄q all have the same order, hence the
extensions Fq/Fp all have the same degree and are thus isomorphic.

In the case we are interested in, Gal(L/K) ↪→ cl(O) is abelian, so conjugacy implies
equality, and the σq are all the same. Thus when Gal(L/K) is abelian, each prime p of K
determines a unique Frobenius element that we denote σp. The map

p 7→ σp

is known as the Artin map (it extends multiplicatively to all OK-ideals that are products of
unramified primes ideals, but this is not relevant to us). The automorphism σp is uniquely
characterized by the fact that

σp(x) ≡ xNp mod q, (1)

for all x ∈ OL and primes q|p.
If E/C has CM by O then j(E) ∈ L, and this implies that (up to isomorphism) E can

be defined by a Weierstrass equation y2 = x3 + Ax + B with A,B ∈ OL. Indeed, as in
the proof of Theorem 13.12, for j(E) 6= 0, 1728 we can take A = 3j(E)(1728 − j(E)) and
B = 2j(E)(1728− j(E))2.

For each prime q of L, so long as the discriminant ∆(E) := −16(4A3 +27B2) does not lie
in q, equivalently, the image of ∆(E) under the quotient map OL → OL/q = Fq is nonzero,
reducing modulo q yields an elliptic curve Ē/Fq defined by y2 = x3 + Āx+ B̄. We then say
that E has good reduction modulo q. This holds for all but finitely many primes q of L,
since the principal ideal (∆(E)) is divisible by only finitely many prime ideals.
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21.2 The First Main Theorem of Complex Multiplication

With the Artin map in hand, we can now complete our proof of the First Main Theorem of
Complex Multiplication.

Theorem 21.1. Let O be an imaginary quadratic order of discriminant D and let L be the
splitting field of HD(X) over K := Q(

√
D). The map Ψ: Gal(L/K)→ cl(O) that sends each

σ ∈ Gal(L/K) to the unique ασ ∈ cl(O) such that j(E)σ = ασj(E) for all j(E) ∈ EllO(L)
is a group isomorphism compatible with the actions of Gal(L/K) and cl(O) on EllO(L).

Proof. In the previous lecture we showed that Ψ is well-defined, injective, and commutes with
the group actions of Gal(L/K) and cl(O); see Theorem 20.14 and the discussion preceding it.
It remains only to show that Ψ is surjective.

Fix α ∈ cl(O), and let p be a prime of K such that the following hold:

(i) p ∩ O is a proper O-ideal of prime norm p such that [p] = α;

(ii) p is unramified in K and p is unramified in L;

(iii) Each j(E) ∈ EllO(L) is the j-invariant of an elliptic curve E/L that has good reduction
modulo every prime q|p (prime ideals q of OL dividing pOL).

(iv) The j(E) ∈ EllO(L) are distinct modulo every prime q|p.

By Theorem 20.11, there are infinitely many p for which (i) holds, and conditions (ii)-(iv)
prohibit only finitely many primes, so such a p exists. To ease the notation, we will also
use p to denote the O-ideal p∩O; it will be clear from context whether we are viewing p as
an OK-ideal as an O-ideal (in particular, anytime we write [p] we must mean [p ∩O], since
we are using [ · ] to denote equivalence classes of O-ideals).

Let us now consider a particular prime q|p and curve E/L with CM by O that has good
reduction modulo q, defined by E : y2 = x3 + Ax + B with A,B ∈ OL and q - ∆(E). Put
Fq := OL/q, and let E/Fq be the reduction of E modulo q, defined by E : y2 = x3 + Āx+ B̄.
The Frobenius element σp induces the p-power Frobenius automorphism σp ∈ Gal(Fq/Fp),
since Np = p, and we have a corresponding isogeny

π : E → Eσp = E
σ̄p

= E
(p)

defined by (x, y) 7→ (xp, yp), where Ep is the curve y2 = x3 + Āpx + B̄p. The isogeny π is
purely inseparable of degree p.

The CM action of the proper O-ideal p ∩ O corresponds to an isogeny φp : E → pE
of degree Np = p, with pE of good reduction modulo q, by (iii), which we can assume is
defined by a rational map (u(x)

v(x) ,
s(x)
t(x) y) where u, v, s, t ∈ OL[x], with u monic and v nonzero

modulo q. The isogeny φ : E → pE obtained by reducing the coefficients of u, v, s, t modulo q
has the same degree p as the isogeny π (we can assume deg v < deg u and u is monic so
its degree doesn’t change when it is reduced). The composition of φ with its dual φ̂ is
the multiplication-by-p map on E, which is inseparable since Fq has characteristic p. This
implies that at least one of φ and φ̂ is inseparable. Without loss of generality we may assume
φ is inseparable: if not, we can replace E by pE and p by its complex conjugate p̄, which
also satisfies (i)-(iv) and induces the dual isogeny φ̂p : pE → E (up to an isomorphism),
since the ideal p̄p = (Np) = (p) induces the multiplication-by-p map on E, and reducing the
rational maps defining φ̂p yields the dual isogeny φ̂ : pE → E.
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By Corollary 5.4, we can decompose the inseparable isogeny φ of degree p as φ = φsep◦π,
where φsep has degree 1 and must be an isomorphism. Thus pE ' Eσp and therefore
j(pE) = j(Eσp), and (iv) implies j(pE) = j(Eσp). It follows that Ψ(σp) = [p] = α, since each
element of cl(O) is determined by its action on any element of the cl(O)-torsor EllO(L).

Corollary 21.2. Let O be an imaginary quadratic order with discriminant D. The Hilbert
class polynomial HD(x) is irreducible over K = Q(

√
D) and for any elliptic curve E/C with

CM by O the field K(j(E)) is a finite abelian extension of K with Gal(K(j(E))/K) ' cl(O).

Proof. Let L be the splitting field of HD(X) over K. The class group cl(O) acts transitively
on the roots ofHD(X) (the set EllO(C)), hence by Theorem 21.1, the Galois group Gal(L/K)
also acts transitively on the roots of HD(X), which implies that HD(X) is irreducible overK
and is the minimal polynomial of each of its roots. The degree of HD is equal to the class
number h(D) = # cl(O) = #Gal(L/K) = [L : K], so we L = K(j(E)) for every root
j(E) of HD(X), equivalently, every j(E) ∈ EllO(C) = {j(E) : End(E) = O}. We have
Gal(L/K) ' cl(O) by Theorem 21.1, which is abelian.

21.3 The ring class field of an imaginary quadratic order

Definition 21.3. Let O be an imaginary quadratic order with discriminantD. The splitting
field of the Hilbert class polynomial of HD(X) over K = Q(

√
D), equivalently, the extension

of K generated by the j-invariant of any elliptic curve E/C with CM by O, is known as the
ring class field of the imaginary quadratic order O with discriminant D.

We say that an integer prime p is unramified in a number field L if the ideal pOL factors
into distinct prime ideals q in OL, and we say that p splits completely in L if the prime
ideals q|p are distinct and have minimal norm Nq = p.

For an imaginary quadratic field K of discriminant D there are three possibilities for the
factorization of the ideal pOK in OK : it either splits (completely into two distinct prime
ideals), ramifies (is the square of a prime ideal), or remains inert (the ideal pOK is already
prime). These are distinguished by the Kronecker symbol

(
D
p

)
, which is 1, 0, -1, respectively,

in these three cases (as proved in Lemma 21.6 below).

Definition 21.4. Let p be a prime and D an integer. For p > 2 the Kronecker symbol is(
D

p

)
:= #{x ∈ Fp : x2 = D} − 1.

For p = 2, we define
(
D
p

)
to be 1 for D ≡ ±1 mod 8, zero if p|D, and −1 for D ≡ ±3 mod 8.

Theorem 21.5. Let O be an imaginary quadratic order with discriminant D and ring class
field L. Let p - D be an odd prime unramified in L.3 The following are equivalent:

(i) p is the norm of a principal O-ideal;
(ii)

(
D
p

)
= 1 and HD(X) splits into linear factors in Fp[X];

(iii) p splits completely in L;

(iv) 4p = t2 − v2D for some integers t and v with t 6≡ 0 mod p.
3If p does not divide D then it must be unramified in L, but we have not proved this yet, so we include

it as a hypothesis which will be removed in Corollary 21.8.
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Proof. Let K := Q(
√
D), let OK = [1, ω] be the ring of integers of K. By Theorem 17.18,

we may write D = u2DK , where u = [OK : O] and DK = discOK is a fundamental
discriminant, and we then have O = [1, uω].

(i)⇒(iv): Let (λ) be a principal O-ideal of norm p. Then [1, λ] is a suborder of O with
discriminant v2u2DK = v2D, where v =

[
O : [1, λ]

]
. Let t := λ + λ̄ so that x2 − tx + p is

the minimal polynomial of λ, with discriminant disc[1, λ] = t2 − 4p = v2D. Then (iv) holds
with t 6≡ 0 mod p because p - D (if p|t then p|v and p2|4p, a contradiction for p 6= 2).

(iv)⇒(i): If 4p = t2− v2D then the polynomial x2− tx+ p with discriminant v2D has a
root λ ∈ OK ; the order [1, λ] has discriminant v2D and therefore lies inO, by Theorem 17.18,
so λ ∈ O, and (λ) is a principal O-ideal of norm λλ̄ = p.

(i)⇒(ii): Since (i)⇒(iv) we have 4p = t2 − v2D for some t, v ∈ Z with t 6≡ 0 mod p, and(
D

p

)
=

(
v2D

p

)
=

(
t2 − 4p

p

)
= 1,

since t2 6≡ 0 mod p. If p is a principal O-ideal of norm p, then p is unramified in L (since
p = pp is unramified in L), and p is principal, so [p] and therefore σp acts trivially on the
roots of HD(X), by Theorem 21.1. The roots of HD(X) mod p must therefore lie in Fp = Fp
and HD(X) splits into linear factors in Fp[X].

(ii)⇒(iii): If
(
D
p

)
= 1, then pOK = pp̄ splits into distinct primes of norm p in K, by

Lemma 21.6, and if HD(X) splits into linear factors in Fp[x], then its roots are all fixed
by σp. This implies [Fq : Fp] = 1, and therefore Nq = [OL : q] = [OK : p] = p for every
prime q|p, so p splits completely in L (it must be unramified, since p is). If pOL = q1 · · · qn,
then p̄OL = q̄1 · · · q̄n (note that ŌL = OL), and pOL = pp̄OL = q1 · · · qnq̄1 · · · q̄n splits
completely in L (the qi and q̄i must all be distinct since p is unramified in L).

(iii)⇒(i): If pOL = q1 · · · qn with the Nq1 = · · ·Nqn = p then Fq := [OL : q] = Fp for
all primes q dividing pOL. If p is a prime of K dividing pOK , then pOL divides pOL must
be divisible by some prime ideal q dividing pOL. The inclusions pZ ⊆ p ⊆ q imply the
inclusions Fp ⊆ Fp ⊆ Fq = Fp, where Fp := [OK : p], so Fp = Fp, and p has norm p. The
extension Fq/Fp is trivial, so the Frobenius element σp ∈ Gal(L/K) is the identity, and so is
[p∩O] ∈ cl(O), by Theorem 21.1 (note: p∩O is a proper O-ideal because Np = p does not
divide D = u2DK). Thus p∩O is a principal O-ideal of norm [O : p∩O] = [OK : p] = p.

Lemma 21.6. Let K be an imaginary quadratic field of discriminant D with ring of integers
OK = [1, ω] and let p be prime. Every OK-ideal of norm p is of the form p = [p, ω − r],
where r ∈ Z is a root of the minimal polynomial of ω modulo p. The number of such ideals
p is 1 +

(
D
p

)
∈ {0, 1, 2} and the factorization of the principal OK-ideal into prime ideals is

(p) =


pp if

(
D
p

)
= 1,

p2 if
(
D
p

)
= 0,

(p) if
(
D
p

)
= −1.

with p 6= p when
(
D
p

)
= 1.

Proof. Let f(x) = x2 − (ω + ω)x + ωω ∈ Z[x] be the minimal polynomial of ω and let p
be an OK-ideal of norm p. Every nonzero OK-ideal is invertible, so by Theorem 17.10 we
have pp = (Np) = (p). Thus p ∈ p, and every integer n ∈ p must be a multiple of p because
otherwise gcd(n, p) = 1 ∈ p would imply p = OK has norm 1 6= p. Therefore p ∩ Z = pZ.
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We can thus write p = [p, aω− r] for some a, r ∈ Z, and [OK : p] = p then implies a = 1.
The ideal p is closed under multiplication by OK , so in particular it must contain

(ω − r)(ω − r) = ωω − (ω + ω)r + r2 = f(r),

which is both an integer and an element of p, hence a multiple of p. Thus r must be a root
of f(x) mod p. Conversely, if r is any root of f(x) mod p, then [p, ω − r] is an OK-ideal of
norm p, and if f(x) mod p has roots r and s that are distinct modulo p, then the OK-ideals
[p, ω − r] and [p, ω − s] are clearly distinct.

It follows that the number of OK-ideals of prime norm p is equal to the number of
distinct roots of f(x) mod p. The discriminant of f(x) is

(ω + ω)2 − 4ωω = (ω − ω)2 = discOK = D, (2)

and when p is odd it follows from the quadratic equation that the number of distinct roots
of f(x) mod p is 1 +

(
D
p

)
, since this is the number of distinct square-roots of D modulo p.

For p = 2, we first note that if D ≡ 0 mod 4 then (2) implies that ω + ω is even, so
f(x) ≡ x2 mod 2 has 1 = 1 +

(
D
2

)
distinct roots. If D ≡ 1 mod 4 then ω+ω must be odd. If

D ≡ 1 mod 8 then (2) implies that ωω must be even (since (ω + ω)2 ≡ 1 mod 8), and then
f(x) ≡ x2 + x mod 2 has 2 = 1 +

(
D
2

)
distinct roots. If D ≡ 5 mod 8 then ωω must be odd,

and then f(x) ≡ x2 + x+ 1 mod 2 has 0 = 1 +
(
D
2

)
distinct roots.

Corollary 21.7. Let O be an order of discriminant D in an imaginary quadratic field K,
and let p be a prime. When p divides the conductor [O : OK ] there are no proper O-ideals of
norm p and otherwise there are 1−

(
D
p

)
= 0, 1, 2, depending on whether p is inert, ramified,

or split in K, respectively

21.4 Class field theory

The theory of complex multiplication was originally motivated not by the study of elliptic
curves, but as a way to construct abelian extensions of imaginary quadratic fields. A cele-
brated theorem of Kronecker and Weber states that every finite abelian extension of Q lies
in a cyclotomic field (a field of the form Q(ζn), for some nth root of unity ζn). The effort
to generalize this result led to the development of class field theory, a branch of algebraic
number theory that was one of the major advances of early 20th century number theory.

In 1898 Hilbert conjectured that every number field K has a unique maximal abelian
extension L/K that is unramified at every prime4 ofK, for which Gal(L/K) ' cl(OK). This
conjecture was proved shortly thereafter by Furtwängler, and the field L is now known as the
Hilbert class field of K. While its existence was quickly proved, the problem of explicitly
constructing L, say by specifying a generator for L in terms of its minimal polynomial
over K, remained an open problem (and for general K it still is).

The field Q has no nontrivial unramified extensions (let alone abelian ones), so its Hilbert
class field is not interesting (it is just Q). After Q, the simplest fields K to consider are
imaginary quadratic fields. For an imaginary quadratic field K of discriminant D, the
splitting field L of the Hilbert class polynomial HD(X) over K; it is a Galois extension of
K with Galois group Gal(L/K) ' cl(OK). It follows from class field theory that L must be
the Hilbert class field of K. The Hilbert class field of an imaginary quadratic field K can

4This includes not only all prime OK-ideals, but also “infinite primes” of K, corresponding to embeddings
of K into C. For imaginary quadratic fields K this imposes no additional restrictions.
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also be characterized as the minimal extension L/K over which there exists an elliptic curve
E with CM by OK ; in other words, L = K(j(E)).

What about the splitting field L of a Hilbert class polynomial HD(X) over K = Q(
√
D)

when D is the discriminant of a non-maximal order O ( OK? These are called ring class
fields. They are abelian extensions of K with Galois group Gal(L/K) ' cl(O), but unlike
the Hilbert class field of K, they are necessarily ramified at some primes. It follows from
class field theory that ramified primes are not proper O-ideals.

The ring class field L is characterized by the infinite set SL/Q of primes that split com-
pletely in L, and with finitely many exceptions, these are precisely the primes p that satisfy
the equation 4p = t2 − v2D for some t, v ∈ Z, with D = disc(O); see [4, Thm. 9.2, Ex. 9.3].
Any extension M/K for which the set SM/Q matches SL/Q with only finitely many excep-
tions must in fact be equal to L, by [4, Thm. 8.19]. We thus have the following corollary of
Theorem 21.5, which removes the assumption that p is unramified in L.

Corollary 21.8. Let O be order of discriminant D in an imaginary quadratic field K. The
splitting field L of HD(X) over K is unramified at all primes that do not divide the conductor
of O. In particular, every rational prime p - D is unramified in L.

Ring class fields allow us to explicitly construct infinitely many abelian extensions of a
given imaginary quadratic field K. One might ask whether every abelian extension of K is
contained in a ring class field. This is not the case, but by extending the ring class field of
on order O by adjoining the x-coordinates of the n-torsion points of an elliptic curve with
CM by O (or powers of them, when discO ∈ {−3,−4}), one obtains what are known as
ray class fields, which depend on the choice of both O and n. These are analogs of the
cyclotomic extensions of Q (which is its own Hilbert class field because it has no unramified
extensions). An analog of the Kronecker-Weber theorem then holds: every abelian extension
of an imaginary quadratic field is contained in a ray class field. One can define ring class
fields and ray class fields for arbitrary number fields, and obtain a similar result (this was
started by Weber and finished by Takagi around 1920), but the constructions are not nearly
as explicit as they are in the imaginary quadratic case.

21.5 The CM method

The equation
4p = t2 − v2D

in part (iv) of Theorem 21.5 is known as the norm equation; it arises from the principal
O-ideal (λ) of norm p given by part (i), generated by a root λ ∈ O ⊆ OK of x2 − tx + p,
which has norm p and trace t. By the quadratic equation

λ =
−t±

√
t2 − 4p

2
=
−t± v

√
D

2
.

Clearing denominators and taking norms yields the equation N(2λ) = 4λλ̄ = 4p = t2−v2D.
Let us assume this equation holds with p - D odd and D < −4. The prime p splits

completely in the ring class field L for the order O of discriminant D, and we can completely
factor HD(X) in both OL[x] and Fp[x]. If we now fix a prime q lying above p, then Nq = p,
by Theorem 21.5, we have a reduction map OL → OL/q ' Fp that we can apply to the
roots of HD(X), equivalently, to the set EllO(C) = {j(E) ∈ C : End(E) ' O}.
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It follows that the j-invariant j(E) of any elliptic curve E/C with CM by O can be
reduced (modulo q) to the j-invariant of an elliptic curve E/Fp that is the reduction of E:
we can always pick a model y2 = x3 + Ax + B for E with A,B ∈ OL such that q - ∆(E)
because p is odd and the denominator of j(E) has to be nonzero modulo q. Now we know
that End(E) ' O, but what about End(E)?

If ϕ ∈ End(E) ' O is a nonzero endomorphism of E, then we can reduce the coefficients
of the rational functions defining ϕ modulo q to obtain a corresponding endomorphism
ϕ̄ ∈ End(E). The endomorphism ϕ̄ is nonzero because it must satisfy the characteristic
equation x2 − [trϕ]x + [degϕ] = 0 in End(E): multiplication-by-n maps [n] can always be
reduced to from End(E) to End(E), so [trϕ] and [degϕ] reduce to maps [tr ϕ̄] and [deg ϕ̄]
that represent multiplication by the same integers. It follows that the reduction map induces
an injective ring homomorphism

End(E) ↪→ End(E). (3)

In fact this map is an isomorphism (see §21.6), but for the moment we will content our-
selves with showing that it at least induces an isomorphism of endomorphism algebras. By
Corollary 13.20 we know that End0(E) is either an imaginary quadratic field or a quaternion
algebra, depending on whether E is ordinary or supersingular.

Corollary 21.9. Let O be an imaginary quadratic order with discriminant D and ring class
field L, and let p - D be an odd prime satisfying 4p = t2 − v2D. Every j(E) ∈ EllO(C) is
the j-invariant of an elliptic curve E/L with good reduction E modulo a prime q of L lying
above p. Provided j(E) 6= 0, 1728, we have trπE = ±t 6≡ 0 mod p and E is ordinary.5

Proof. By Theorem 21.5 and its proof, p is the norm of a principal O-ideal p := (λ), where
λ has norm p and trace t. As in the proof of Theorem 21.1, one of the isogenies φp : E → pE

and φp̄ : E → p̄E induces a purely inseparable isogeny φ : E → E
(p)

= E, which up to an
automorphism, must be the Frobenius endomorphism πE . We have trφ = trφp = trφp̄ = t,
with t 6≡ 0 mod p by part (iv) of Theorem 21.5. For j(E) 6= 0, 1728 the only automorphisms
of E are ±1, so trπE = ± trφ = ±t 6≡ 0 mod p and E is ordinary.

Corollary 21.9 gives us an explicit method for constructing elliptic curves over finite
fields with a prescribed number of rational points. Let D < −4 be an imaginary quadratic
discriminant and let p - D be an odd prime. In this case the norm equation 4p = t2 − v2D
determines t (and v) up to a sign, and we can efficiently compute a solution (t, v) using
Cornacchia’s algorithm (see Problem Set 2). Given the Hilbert class polynomial HD(X),
we can efficiently compute a root j0 of HD(X) over Fp (using a randomized root-finding
algorithm) and then write down the equation y2 = x3 +Ax+B of an elliptic curve E with
j(E) = j0, using A = 3j(1728− j) and B = 2j(1728− j)2 (assuming j0 6= 0, 1728).

The Frobenius endomorphism πE then satisfies trπE = ±t, and by Hasse’s theorem,

#E(Fp) = p+ 1− tr(πE).

The sign of trπE depends can be explicitly determined using the formulas in [9]. Alterna-
tively, one can simply pick a random point P ∈ E(Fp) and check whether (p+ 1− t)P = 0
or (p+ 1 + t)P = 0 both hold (at least one must); if only one of these equations is satisfied,
then trπ is determined (for large p this will almost always happen with the first P we try).
Note that we can always change the sign of trπ be replacing E with its quadratic twist.

5In fact E is also ordinary when j(E) ∈ {0, 1728}, but this takes more work to prove.
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Now suppose that wish to construct an elliptic curve E over some finite field Fp such
that #E(Fp) = N , for some positive integer N . Provided we can factor N (typically N is
prime and this is easy), we can use Cornacchia’s algorithm to find a solution (a, v) to

4N = a2 − v2D

for any particular imaginary quadratic discriminant D, whenever such a solution exists.6

Given a solution (a, v), we put t := a+ 2 and check whether p := N − 1 + t is prime. If not,
or if no solution (a, v) can be found, we just try a different discriminant D. In practice this
will happen quite quickly; see [3] for a heuristic complexity analysis.

Once we have p = N − 1 + t prime, we then observe that

4p = 4N − 4 + 4t = a2 − v2D − 4 + 4a+ 8 = (a+ 2)2 − v2D = t2 − v2D,

so the norm equation is satisfied, and we can construct an elliptic curve E/Fp with trπE = ±t
using the Hilbert class polynomial HD(X) as described above, taking a quadratic twist if
necessary to get trπE = t. We then have #E(Fp) = p+ 1− t = N as desired.

This method of constructing an elliptic curve E/Fp is known as the CM method. The
CM method has many applications, one of which is an improved version of elliptic curve
primality proving developed by Atkin and Morain [1]; see Problem Set 11.

Remark 21.10. It can happen that HD(X) has roots in Fp even when p does not split
completely in the ring class field L. These roots cannot be j-invariants of elliptic curves
E/Fp with End(E) = O, we must have O ( End(E), and in fact the fraction field K of O
must be properly contained in End0(E). This means that End0(E) has to be a quaternion
algebra that contains the imaginary quadratic field K. This cannot happen when p = pp
splits inK (which occurs exactly when

(
D
p

)
= 1), because L/K is Galois and the residue field

extensions Fq/Fp all have the same degree (so HD mod p either has no roots at all or splits
completely and in the latter case p must split completely in the ring class field for O). But
if p is inert in K then HD(X) can easily have roots modulo p that must be j-invariants of
supersingular elliptic curves. This actually provides a very efficient method for constructing
supersingular elliptic curves; see [2] for details.

Remark 21.11. We have restricted our attention to prime fields Fp in order to simplify
the exposition, but everything we have done generalizes to arbitrary finite fields Fq of prime
power order q. If O is an imaginary quadratic order of discriminant D with ring class field L,
in Theorem 21.5 we can replace p - D with q ⊥ D, replace

(
D
p

)
= 1 with the requirement

that D is a square in Fq (automatic when q is a square), and rather than requiring p to split
completely in L we require q to be the norm of a prime ideal q in OL. The norm equation
then becomes 4q = t2 − v2D with t ⊥ q, and if it is satisfied with D < −4 the Hilbert class
polynomial HD(X) splits completely in Fq[x] and its roots are j-invariants of elliptic curves
E/Fq with trπE = ±t (which in fact have End(E) = O).

The main limitation of the CM method is that it requires computing the Hilbert class
polynomial HD(X), which becomes very difficult when |D| is large. The degree of HD(X)
is the class number h(D) ≈

√
|D|, and the size of its largest coefficient is on the order of

6We need to be able to factor N because Cornacchia’s algorithm requires a square root of D modulo N ;
computing square roots modulo primes is easy, and if we know the factorization of N we can use the CRT
to reduce to this case; in general, computing square roots modulo N is as hard as factoring N .
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√
|D| log |D| bits.7 Thus the total size of HD(X) is on the order of |D| log |D| bits, which

makes it impractical to even write down if |D| is large. An efficient algorithm for computing
HD(X) is outlined in Problem Set 11, and with a suitably optimized implementation, it
can practically handle discriminants with |D| as large as 1013, for which the size of HD(X)
is several terabytes [11]. Using class polynomials associated to other modular functions
discriminants up to |D| ≈ 1015 can be readily addressed [5], and with more advanced
techniques, even |D| ≈ 1016 is feasible [12].

21.6 The Deuring lifting theorem

As noted in the previous section, the injective ring homomorphism End(E) ↪→ End(E) given
by (3), where E/Fp is the reduction of an elliptic curve E/L with CM by O over its ring
class field L modulo an unramified prime q of norm p, is actually an isomorphism. Moreover,
every elliptic curve over Fp with CM by O arises as the reduction of an elliptic curve E/L,
and this correspondence is a bijective at the level of j-invariants. These facts follow from
results of Deuring that we won’t take the time to prove, but record here for reference.

Theorem 21.12 (Deuring). Let O be an imaginary quadratic order of discriminant D with
ring class field L, and let q be the norm of a prime ideal in OL with q ⊥ D. Then HD(X)
splits into distinct linear factors in Fq[X] and its roots form the set

EllO(Fq) := {j(E) ∈ Fq : End(E) ' O}.

of j-invariants of elliptic curves E/Fq with CM by O.

Proof. This follows from [6, Thm. 13].

Theorem 21.13 (Deuring lifting theorem). Let E/Fq be an elliptic curve over a finite field
and let φ ∈ End(E) be nonzero. There exists an elliptic curve E∗ over a number field L with
an endomorphism φ∗ ∈ End(E∗) such that E∗ has good reduction modulo a prime q of L
with residue field OL/q ' Fqand E and φ are the reductions modulo q of E∗ and φ∗.

Proof. See [6, Thm. 14].

21.7 Summing up the theory of complex multiplication

Let O be an imaginary quadratic order of discriminant D.

E L a ax2 + bxy + cy2

j(E) j(L) [a] reduced form

EllO(C) {j(L) : O(L) = O} cl(O) cl(D)

isomorphism homethety mod principal ideals SL2(Z)-equivalence

7Under the Generalized Riemann Hypothesis, these bounds are accurate to within an O(log log |D|) factor.
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The figure above illustrates four different objects that have been our focus of study for the
last several weeks:

1. Elliptic curves E/C with CM by O.
2. Lattices L (which define tori C/L that correspond to elliptic curves).

3. Proper O-ideals a (which may be viewed as lattices).

4. Reduced primitive positive definite binary quadratic forms of discriminant D (which
correspond to proper O-ideals of norm a).

In each case we defined a notion of equivalence: isomorphism, homethety, equivalence
modulo principal ideals, and equivalence modulo an SL2(Z)-action, respectively. Modulo
this equivalence, we obtain a finite set of objects with the cardinality h(O) = h(D) in each
case. The two sets on the right, cl(O) and cl(D), are finite abelian groups that act on the
two sets on the left, both of which are equal to EllO(C). This action is free and transitive,
so that EllO(C) is a cl(O)-torsor.
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