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The modularity theorem 

Definition 
An elliptic curve E/Q is modular if it has the same L-function as a modular form. 

Theorem (Taylor-Wiles 1995) 

Every semistable elliptic curve E/Q is modular. 

Corollary (Wiles 1995) 
nThe equation xn + yn = z has no integers solutions with xyz =6 0 for n > 2. 

Theorem (Breuil-Conrad-Diamond-Taylor 2001) 

Every elliptic curve E/Q is modular. 
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Weak modular forms
Definition

c d

A holomorphic function f : H→ C is a w(eak)modular form of weight k for a
congruence subgroup Γ if for every γ = a b ∈ Γ we have

f(γτ) = (cτ + d)kf(τ).

If −I ∈ Γ, for odd k the only weak modular form of weight k is the zero function.

Example
The j-function j(τ) is a weak modular form of weight 0 for SL2(Z), and for k ≥ 3

Gk(τ) := Gk([1, τ ]) :=
∑

m,n∈Z
(m,n)6=(0,0)

1
(m+ nτ)k ,

is a weak modular form of weight k for SL2(Z).
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Modular forms
If Γ(N) ⊆ Γ then f(τ +N) = f(τ) for any weak modular form f : H→ C.
It follows that f has a q-expansion (at ∞) of the form

f(τ) = f∗(q1/N )
∞∑

n=−∞
anq

n/N (q := e2πiτ )

Definition
A weak modular form f is holomorphic at ∞ if f∗ is holomorphic at 0, and f is
holomorphic at the cusps if f(γτ) is holomorphic at ∞ for all γ ∈ SL2(Z).
A modular form is a weak modular form that is holomorphic at the cusps.

Example
The j-function is not a modular form, but the Eisenstein series Gk(τ) is a modular
form of weight k for all even k ≥ 4.
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Cusp forms 

Definition 
A modular form is a cusp form if it vanishes at all the cusps; equivalently its 

nq-expansion has the form
P 
n�1 anq (at every cusp). 

Example 

The Eisenstein series Gk(˝) are not cusp forms but the discriminant function 

�(˝) = g2(˝)3 − 27g3(˝)2

is a cusp form of weight 12 for SL2(Z). 

The set Mk(�) of modular forms of weight k for � is a C-vector space that contains 
the set of cusp forms Sk(�) as a subspace. For k = 2 we have dim Sk(�) = g(�). 

5



Hecke operators 

Definition 
For n 2 Z>0 the Hecke operator (or Hecke correspondence) Tn is a linear operator on 
the free abelian group of lattices L := [!1, !2] defined by X 

Tn := L0. 
[L:L0]=n

We also define the homethety operator R� by L 7! �L, for all � 2 C×. 

Theorem 
The operators Tn and R� satisfy the following: 
(i) TnR� = R�Tn and R�Rµ = R�µ.

(ii) Tmn = TmTn for all m ? n.
(iii) Tpr+1 = Tpr Tp − pTpr−1 Rp for all primes p and integers r � 1.
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The action of Hecke operators on modular forms 

Each modular form f : H ! C of weight k defines a function on lattices [!1, !2] via 

f([!1, !2]) := f(!−1[1, !2/!1]) := !−kf(!2/!1).1 1 

Definition 
For f 2 Mk(�0(1)) we define 

R�f(˝) := f(�[1, ˝ ]) = �−kf(˝) 2 Mk(�0(1)), � �X X a˝ + bk−1 k−1Tnf(˝) := n f(L) = n d−kf 2 Mk(�0(1)).
[[1,˝ ]:L]=n ad=n, 0�b<d d 

R� and Tn are linear operators on Mk(�0(1)) that we can restrict to Sk(�0(1)). 
We have Tmn = TmTn for m ? n, and Tpr+1 = Tpr Tp − pk−1Tpr−1 for p prime. 
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Eigenforms 

Theorem 
For any f 2 Sk(�0(1)) and prime p we have ( 

anp(f) if p - n,
an(Tpf) = 

k−1(f) + p (f) if p | n.anp an/p 

and for all m ? n we have am(Tnf) = amn(f). In particular a1(Tn(f)) = an(f). 

Definition 
An eigenform for Sk(�0(1)) satisfies Tnf = �nf for some �1, �2, . . . 2 C×. 
We normalize eigenforms so that a1(f) = 1, and then �n = an for all n 2 Z>0. 

k−1We then have aman = amn for m ? n and apr = apapr−1 − p apr−2 for p prime. 
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A basis of eigenforms 

Definition 
Let � be a congruence subgroup. The Petersson inner product on Sk(�) is defined by Z 

hf, gi = f(˝)g(˝)y k−2dxdy.
F 

Is is a positive definite Hermitian form on Sk(�): it is bilinear and hf, gi = hg, fi, 
with hf, fi = 0 if and only if f = 0. Moreover, we have hf, Tngi = hTnf, gi. 
The Hecke operators are thus Hermitian operators on the space Sk(�). 

Theorem 
The space of cusp forms for Sk(�0(1)) is a direct sum of one-dimensional Hecke 

neigenspaces, and it has a unique basis of normalized eigenforms f(˝) = 
P 
anq for 

which an is the eigenvalue of Tn on the subspace spanned by f . 
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The Atkin-Lehner theory of newforms 

Definition 
A cusp form f 2 Sk(�0(N)) is old if f 2 Sk(�0(M)) for some M properly dividing N . 
The set of old forms is a subspace Sold(�0(N)) of Sk(�0(N)). Taking the orthogonal k 

complement with respect to the Petersson inner product yields 

Sk(�0(N)) = Sold(�0(N)) � Snew(�0(N)),k k 

The level of f 2 Sk(�0(N)) is the unique M |N for which f 2 Snew(�0(M)).k 

Normalized eigenforms f 2 Snew(�0(N)) are called newforms.k 

Theorem (Atkin-Lehner) 

The space Snew(�0(N)) is a direct sum of one-dimensional Hecke eigenspaces, each 
ngenerated by 

k 

a newform f(˝) = 
P 

anq for which an is the eigenvalue of Tn on hfi.n 
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Dirichlet series 

Definition P −sA Dirichlet series is a function of the form L(s) = n�1 ann with an 2 C. 
If |an| = O(n˙) then L(s) converges locally uniformly in the half plane re(s) > 1 + ̇ . 

Example P −sThe Riemann zeta function is the Dirichlet series �(s) = n�1 n . 
It converges locally uniformly to a holomorphic function on re(s) > 1, 
with a simple pole at s = 1 and no other poles. Moreover, the following hold: 
• �(s) has an analytic continuation to a meromorphic function on C;
• �̃(s) = ˇ−s/2�(2 

s )�(s) satisfies1 the functional equation �̂(s) = �̂(1 − s);Q
• we have the Euler product �(s) = (1 − p−s)−1.p 

R 1 −t s−11Here �(s) := e t dt is the Euler gamma function.0 
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L-functions of modular forms

Definition
n −sThe L-function of a cusp form f = 

P 
anq is the Dirichlet series L(f, s) := 

P 
ann .

If f has weight k then L(f, s) converges locally uniformly on re(s) > 1 + k/2. 

Theorem (Hecke) 

For f 2 Sk(�0(N)) the L-function L(f, s) has an holomorphic continuation to C and 
L̂(f, s) := N s/2(2ˇ)−s�(s)L(f, s) satisfies L̂(f, s) = ±L̂(f, k − s). 
For f 2 Snew(�0(N)) the L-function L(f, s) has the Euler product k X −s = 

Y −2s)−1L(f, s) = ann (1 − app −s + ̃ (p)p k−1 p , 
n�1 p 

where the Dirichlet character ˜ satisfies ˜(p) = 0 for p|N and ˜(p) = 1 otherwise. 
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Summary of modular forms for Γ0(N)
• A modular form of weight k for Γ0(N) is a holomorphic function f : H∗ → C

satisfying f(γτ) = (cτ + d)kf(τ) for all γ =
(
a b
)
∈ Γ0(N).c d

• A cusp form f ∈ Sk(Γ0(N)) vanishes at the cusps (its q-expansion has a0 = 0).
• The cusp forms Sk(Γ0(N)) are a C-vector space with a Petersson inner product.
• The Hecke operators Tn are commuting Hermitian operators on Sk(Γ0(N)).
• An eigenform f =

∑
anq

n ∈ Sk(Γ0(N)) satisfies Tnf = anf for all n ≥ 1.
• A cusp form f ∈ SkΓ0(N)) is old if f ∈ Sk(Γ0(M)) for some proper divisor M |N ,

and we have Sk(Γ0(N)) = Sold(Γ ( )) new(Γ0(N)).k 0 N Sk

• The level of f ∈ Sk(Γ0(N)) is the least M |N for which f ∈ Snew
k (Γ0(M)).

• The newforms of weight k and level N are a canonical basis for Snew
k (Γ0(N)).

ˆ
• The L-function L(f, s) has an analytic continuation, a functional equation

satisfied by L(f, s), and an Euler product
∏

(1− app−s + χ(p)pk−1p−2s)−1.
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The L-function of an elliptic curve over Q

Definition 
The L-function of an elliptic curve E/Q is defined by the Euler product 

Y 
LE(s) = Lp(p −s)−1 = 

Y� 
1 − app −s + ̃ (p)pp −2s 

�−1 
,

p p 

where ˜(p) is 0 if E has bad reduction at p, and 1 otherwise. For primes of good 
reduction ap := p + 1 − #E(Fp) is the trace of Frobenius, and otherwise 

1 
8 >< if E has additive reduction at p; 

Lp(T ) = 1 − T
1 + T

>: if E has split mulitiplicative reduction at p; 
if E has non-split multiplicative reduction at p. 

This means that ap 2 {0, ±1} at bad primes. 
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Primes of bad reduction 

Definition 
Let K be a number field. An integral model for E/K is a Weierstrass equation 

y 2 + a1xy + a3y = x 3 + a2x 
2 + a4x + a6,

with a1, a2, a3, a4, a6 2 OK . The minimal discriminant of E/K is the OK -ideal Y min vp(�)�min(E) := p 
p 

where p varies over primes of K and � over discriminants of integral models for E. 
A prime of bad reduction for E is a prime p of K that divides the ideal �min(E). 

A global minimal model for E/K is an integral model with discriminant �min(E). 
Such models always exist when K has class number one (and in particular for K = Q). 
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Why we like (general) Weierstrass equations 
2Every elliptic curve E/Q can be defined by an equation of the form y = x3 + Ax + B. 

But equations of this form are usually not global minimal models, and a prime p that 
divides the discriminant −16(4A3 + 27B2) is not necessarily a prime of bad reduction, 

2even though y = x3 + Ax + B defines a singular curve over Fp in this case. 

Example 
2Consider the elliptic curve y = x3 − 13392x − 1080432 over Q. 

We have A = 24 · 33 · 31 and B = 24 · 33 · 41 · 61 (so no extraneous powers), and 

� = −16(4A3 + 27B2) = −350572971995136 = −212312115 .

But 2 and 3 are not primes of bad reduction! 
Indeed, y2 + y = x3 − x2 is a global minimal model with discriminant �min(E) = −11. 
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Types of bad reduction

If p is an odd prime of bad reduction for E/Q we can find an integral model y2 = f(x)
whose discriminant ∆ satisfies vp(∆) = vp(∆min) > 0, and f(x) then has a repeated
root r modulo p. Without loss of generality, we assume r = 0 (replace x with x− r).

Over Fp we then have the curve E : y2z = x3 + ax2z with a singular point (0 : 0 : 1).
Now define Ens(Fp) := E(Fp)− {(0 : 0 : 1)} and let ap := p−#Ens(Fp) ∈ Z.
The set Ens(Fp) is a finite abelian group (under the usual group law) and we have(

a
p

)
#Ens(Fp) E

ns(Fp) reduction type
0 p ' Fp

+1 p− 1 ' F×p
additive
split multiplicative

−1 p+ 1 ' {α ∈ Fp
×

2 : αp+1 = 1} non-split multiplicative

Note that ap = p−#Ens(Fp) =
(
a
p

)
in every case. Something similar works for p = 2.

17



The conductor of an elliptic curve 

Definition 
The conductor of an elliptic curve E/Q is the integer Y 

"(p)+�(p)NE := p 
p 

where "(p) = 0, 1, 2 when E has good, multiplicative, additive reduction at p. 
The “wild” exponent �(p) is zero unless we have additive reduction at p = 2, 3 in which 
case it can be defined using the ramification of p in the the pn-torsion fields Q(E[pn]). 
We have NE |�min(E) with vp(NE) � 8, 5 for p = 2, 3 and vp(NE) � 2 for p > 3. 

Definition 
An elliptic curve E/Q is semistable if its conductor is squarefree. 
Equivalently, E does not have additive reduction at any prime. 
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Modularity 
Definition P −sFor an elliptic curve E/Q with L(E, s) = ann we define fE : H ! C by 

fE(˝) := 
X 

anq 
n (q := e 2ˇi˝ )

n�1 

The elliptic curve E is modular if the function fE is a modular form. 
Equivalently, E is modular if and only if L(E, s) is the L-function of a modular form. 

If E is modular then fE must be a cusp form of weight 2 since the Euler factors are 

k−1 −2s1 − app −s + ̃ (p)pp −2s = 1 − app −s + ̃ (p)p p ,

Theorem (Modularity theorem) 

Let E/Q be an elliptic curve. Then fE is an eigenform of weight 2 and level NE . 
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The functional equation 

Corollary 

Let E/Q be an elliptic curve. The L-function L(E, s) has a holomorphic continuation 
to C and L̂(E, s) := Ns/2(2ˇ)−s�(s)LE(s) satisfies L̂(E, s) = ±L̂(E, 2 − s).E 

Notice that L̂(E, s) = −L̂(E, 2 − s) is possible only when ords=1L(E, s) is odd. 

Conjecture (Weak BSD) 

We have E(Q) ' Zr � E(Q)tors if and only if ords=1L(E, s) = r. 

Conjecture (Parity conjecture) 

If E(Q) ' Zr � E(Q)tors then L̂(E, s) = (−1)rL̂(E, 2 − s). 
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Eichler-Shimura 

Definition 
n 2 SnewLet f = 

P 
anq 2 (�0(N)) be a newform. 

The coeÿcients an are algebraic integers that generate a finite extension Q(f)/Q. 
The dimension of f is dim f := [Q(f) : Q]; we call f rational if dim f = 1. 

One can associate to any newform in f 2 S2
new(�0(N)) a lattice � in Cd and a 

corresponding abelian variety Af := Cd/� of dimension d = dim f defined over Q.Q
One then has L(A, s) = ˙ L(˙(f), s) where ˙(f) ranges over the Aut(C)-orbit of f
(equivalently, an 2 Q(f) and ˙ varies over embeddings of Q(f) into C). 

Theorem (Eichler-Shimura, Carayol) 

For every rational newform f 2 S2
new(�0(N)) there is an elliptic curve E/Q of 

conductor N with fE = f and L(E, s) = L(f, s). 
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Faltings-Tate 

Recall that isogenous elliptic curves over Fp have the same trace of Frobenius. 
If E1 and E2 are isogenous elliptic curves over Q, then ap(E1) = ap(E2) for all 
primes of good reduction, and in fact ap(E1) = ap(E2) for all primes. 

It follows that isogenous elliptic curves over Q have the same L-function. 
Remarkably, the converse holds, in fact something even stronger holds. 

Theorem (Faltings-Tate) 

If two elliptic curves E, E0 over Q satisfy ap(E) = ap(E0) for all but finitely many 
primes p then E and E0 are isogenous (thus ap(E) = ap(E0) for all primes p). 

Corollary 

Elliptic curves over Q are isogenous if and only if they have the same L-function. 
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Isogeny classes of elliptic curves and modular forms 
Distinct eigenforms S2

new(�0(N)) necessarily have distinct L-functions, since their 
nq-expansions 

P 
anq must be linearly independent. The modular form fE given by 

the modularity theorem thus depends only on the isogeny class of E/Q and in general 
there may be non-isomorphic isogenous E/Q that correspond to the same fE . 

There is thus in general a many-to-one relationship between elliptic curves over Q and 
rational eigenforms of weight 2, but a one-to-one relationship between isogeny classes 
of elliptic curves over Q and rational eigenforms of weight 2. 

You can see this explicitly in the L-functions and Modular Forms Database (LMFDB). 

Example 

The elliptic curves 11.a1, 11.a2, 11.a3 of conductor NE = 11 make up the isogeny 
class 11.a, which corresponds to the modular form 11.2.a.a of weight 2 and level 11. 
They all have the same L-function 2-11-1.1-c1-0-0, which has ords=1L(s) = 0. 
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https://www.lmfdb.org
https://www.lmfdb.org/11.a1
https://www.lmfdb.org/11.a2
https://www.lmfdb.org/11.a3
https://www.lmfdb.org/11.a
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/11/2/a/a/11.2.a.a
https://www.lmfdb.org/L/2/11/1.1/c1/0/0
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