1 Introduction

Most of the content of this overview lecture is contained in the <u>slides</u> that were used in class. These notes contain some additional details on using the Newton polygon to compute the genus of a plane curve. They imply, in particular, that all nonsingular cubics, including the Weierstrass equation $y^2 = x^3 + Ax + B$ with $-16(4A^3 + 27B^2) \neq 0$, are curves of genus 1, as are Edward's curves: $x^2 + y^2 = 1 + cx^2y^2$ with $c \neq 0, 1$.

1.1 Computing the genus of a plane curve

Let k be a field with algebraic closure \bar{k} . For a polynomial $f \in k[x, y]$ we use $f^* \in k[x, y, z]$ to denote its homogenization.

Definition 1.1. For a polynomial $f(x,y) = \sum a_{ij}x^iy^j \in k[x,y]$, the Newton polygon $\Delta(f)$ of f is the convex hull of the set $\{(i,j): a_{ij} \neq 0\} \subseteq \mathbb{Z}^2$ in \mathbb{R}^2 . The interior and boundary of $\Delta(f)$ are denoted $\Delta^{\circ}(f)$ and $\partial\Delta(f)$, respectively, and for each edge $\gamma \subseteq \Gamma\Delta(f)$ we define the polynomial $f_{\gamma}(x,y) := \sum_{(i,j) \in \gamma} a_{ij}x^iy^j$.

Theorem 1.2 (Baker's Theorem). Let $f(x,y) \in k[x,y]$ be irreducible in $\bar{k}[x,y]$, and let $F := \operatorname{Frac}(k[x,y]/(f))$ denote the corresponding function field, with genus g(F). Then

$$g(F) \le \#\{\Delta^{\circ}(F) \cap \mathbb{Z}^2\}.$$

Proof. See [1, Theorem 2.4] for a short proof based on the Riemann–Roch theorem. \Box

Definition 1.3. A polynomial $f \in k[x,y]$ is nondegenerate with respect to an edge γ of $\partial \Delta(f)$ if the polynomials $f_{\gamma}, x \frac{\partial f_{\gamma}}{\partial x}, y \frac{\partial f_{\gamma}}{\partial y}$ have no common zero in $(\bar{k}^{\times})^2$. The polynomial f is nondegenerate with respect to $\Delta(f)$ if it is nondegenerate with respect to every edge of $\partial \Delta(f)$ and not divisible by x or y.

Remark 1.4. For any edge γ of $\Delta(f)$, if either of the partial derivatives of $f_{\gamma}(x,y)$ is a monomial, then f is nondegenerate with respect to γ , since monomials have no zeros in $(\bar{k}^{\times})^2$.

Proposition 1.5. Let $f(x,y) \in k[x,y]$ be an irreducible nondegenerate polynomial in $\bar{k}[x,y]$, and suppose $f^*(x,y,z)$ has no singularities outside $\{(0:0:1),(0:1:0),(1:0:0)\}$. Then

$$g(F) = \#\{\Delta^{\circ}(F) \cap \mathbb{Z}^2\}.$$

Proof. See [2, Theorem 4.2]

Example 1.6. Let $f(x,y) = y^2 - x^3 - Ax + B$, with $A, B \in k$, and $-16(4A^3 + 27B^2) \neq 0$. Then f(x,y) is irreducible in $\bar{k}[x,y]$, and $\partial \Delta(f)$ has the three edges $\gamma_1 = [(0,0),(3,0)]$, $\gamma_2 = [(0,0),(0,2)]$, and $\gamma_3 = [(0,2),(0,3)]$. We have

$$f_{\gamma_1}(x, y) = -x^3 - Ax - B,$$

 $f_{\gamma_2}(x, y) = y^2 - B,$
 $f_{\gamma_3}(x, y) = y^2 - x^3.$

The polynomial f(x, y) is not divisible by x or y, and the fact that the discriminant of $x^3 + Ax + B$ is nonzero implies that f is nondegenerate with respect to γ_1 . By Remark 1.4,

f is also nondegenerate with respect to the edges γ_2 and γ_3 . Thus f(x,y) is nondegenerate, and $f^*(x,y,z)$ has no singularities at all, so Proposition 1.5 implies that

$$g(F) = \#\{\Delta^0(F) \cap \mathbb{Z}^2\} = \#\{(1,1)\} = 1.$$

Example 1.7. Let $f(x,y) = x^2 + y^2 - 1 - cx^2y^2$ with $c \neq 0,1$. Then f(x,y) is irreducible in $\bar{k}[x,y]$, and $\partial \Delta(f)$ has the four edges $\gamma_1 = [(0,0),(2,0)], \ \gamma_2 = [(0,0),(0,2)], \ \gamma_3 = [(0,2),(2,2)], \ \text{and} \ \gamma_4 = [(2,0),(2,2)].$ We have

$$f_{\gamma_1}(x,y) = x^2 - 1,$$

$$f_{\gamma_2}(x,y) = y^2 - 1,$$

$$f_{\gamma_3}(x,y) = y^2 - cx^2y^2,$$

$$f_{\gamma_4}(x,y) = x^2 - cx^2y^2.$$

The polynomial f(x, y) is not divisible by x or y and Remark 1.4 applies to all four f_{γ_i} , thus f is nondegenerate. The homogenized polynomial $f^*(x, y, z)$ is singular only at (0:1:0) and (1:0:0), so f satsifies the hypothesis of Proposition 1.5 and

$$g(F) = \#\{\Delta^0(F) \cap \mathbb{Z}^2\} = \#\{(1,1)\} = 1.$$

References

- [1] Peter Beelen, <u>A generalization of Baker's theorem</u>, Finite Fields and Their Applications **15** (2009), 558–568.
- [2] Peter Beelen and Ruud Pellikaan, <u>The Newton polygon of plane curves with many rational points</u>, Designs, Codes and Cryptography **21** (2000), 41–67.

MIT OpenCourseWare https://ocw.mit.edu

18.783 / 18.7831 Elliptic Curves Spring 2021

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.