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2 Elliptic curves as abelian groups

In Lecture 1 we defined an elliptic curve as a smooth projective curve of genus 1 with a
distinguished rational point. An equivalent definition is that an elliptic curve is an abelian
variety of dimension one. An abelian variety is a smooth projective variety equipped with a
group structure defined by rational maps (we will make this definition more precise below).
Remarkably, the fact that we are working with projective varieties rather than affine varieties
forces the group operation to be commutative, which is why they are called abelian varieties.

In this lecture we will prove that elliptic curves are abelian varieties by explicitly deriving
the rational maps that define the group law. In the course of doing so we will verify that
they do in fact satisfy the axioms required of a group operation.

2.1 The group law for Weierstrass curves

Recall from Lecture 1 that the group law for an elliptic curve defined by a Weierstrass
equation is given by the following rule:

Three points on a line sum to zero, which is the point at infinity.

For convenience let us assume we are working over a field k whose characteristic is not 2
or 3. In this case may we assume that we are working with an elliptic curve E/k defined by
a short Weierstrass equation

E : y2 = x3 +Ax+B.

The case of a general Weierstrass equation y2+a1xy+a3y = x3+a2x
2+a4x+a6 is essentially

the same, but the formulas are slightly more complicated; see [6, III.2.3] for details and a
proof that every elliptic curve can be defined by a Weierstrass equation.

Recall that although we typically specify our curves using an affine equation in the
variables x and y, we are really working with the corresponding projective curve, which in
this case is given by the homogeneous equation

E : y2z = x3 +Axz2 +Bz3

In order to specify an elliptic curve we need not only an equation defining the curve, but
also a distinguished rational point, which acts as the identity of the group. For curves in
Weierstrass form we always take the point O := (0 : 1 : 0) at infinity as our distinguished
point; this is the unique point on the curve E that lies on the line z = 0 at infinity: if z = 0
then x = 0 and we may assume y = 1 after scaling the projective point (0 : y : 0) by 1/y;
note that x = z = 0 forces y 6= 0, since (0 : 0 : 0) is (by definition) not a projective point.

Every point P 6= O on the curve E thus has a nonzero z-coordinate which we can scale
to be 1, and we use the notation P = (x0, y0) := (x0 : y0 : 1) to denote these affine points.
Notice that the point Q = (x0,−y0) also lies on the curve E, and the projective line through
P and Q is defined by x = x0z, which also passes through O = (0 : 1 : 0). The three points
P,Q,O lie on a line, so P +Q+O = P +Q = O, and therefore Q = −P .

Let us verify that O acts as the identity element: the line between O and any point P
intersects the curve at −P (this is a double intersection at a tangent when P = −P ). We
then have O + P + (−P ) = O, so O + P = P . Commutativity of the group law follows
immediately from our definition, so P +O = P also holds.

Associativity is not obvious, and while it can be rigorously proven algebraically, this is a
tedious task that does not yield much insight. So we will give two proofs. The first will only
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apply to the generic case but it is short and provides some intuition as to why our definition
of the group law is associative. The second will be algebraic and fully rigorous, but we will
let Sage do all the dirty work for us.

2.1.1 A geometric proof of associativity in the generic case

This is an adaptation of the proof in [3, p. 28]. Let P , Q, R be points on an elliptic curve
E over a field k that we may assume is algebraically closed (if the group law is associative
over k̄ then it is certainly also associative when we restrict to k). We shall also assume that
P , Q, R, and the zero point O are all in general position. This means the points this means
that in the diagram below there are no relationships among the points other than those that
necessarily exist by construction; in particular the points P,Q,R,O, P + R,P + Q are all
distinct and there is no line that contains three of them.

The line `0 through P and Q meets the curve E at a third point, −(P +Q), and the line
m2 through O and −(P + Q) meets E at P + Q. Similarly, the line m0 through Q and R
meets E at −(Q+R), and the line `2 through O and −(Q+R) meets E at Q+R. Let S
be the third point where the line `1 through P +Q and R meets E, and let T be the third
point where the line m1 through P and Q+R meets E. See the diagram below:

m0 m1 m2

`0

`1

`2

S

T

Q P −(P + Q)

R P + Q

−(Q + R) Q + R

O

We have S = −((P + Q) + R) and T = −(P + (Q + R)). It suffices to show S = T .
Suppose not. Let g(x, y, z) be the cubic polynomial formed by the product of the lines
`0, `1, `2 in homogeneous coordinates, and similarly let h(x, y, z) = m0m1m2. We may
assume g(T ) 6= 0 and h(S) 6= 0, since the points are in general position and S 6= T .
Thus g and h are linearly independent elements of the k-vector space V of homogeneous
cubic polynomials in k[x, y, z]. The space V has dimension

(
3+2
2

)
= 10, thus the subspace

of homogeneous cubic polynomials that vanish at the eight distinct points O, P , Q, R,
±(P + Q), and ±(Q + R) has dimension 2 and is spanned by g and h. The polynomial
f(x, y, z) = x3 +Axz2 +Bz3 − zy2 that defines E is a nonzero element of this subspace, so
we may write f = ag + bh as a linear combination of g and h. Now f(S) = f(T ) = 0, since
S and T are both points on E, but g(S) = h(T ) = 0 and g(T ), h(S) 6= 0, which implies that
both a and b are zero. But this is a contradiction because f is not the zero polynomial.

This completes our geometric proof of the group law (in the generic case). In order to give
a completely general algebraic proof, and to be able to actually perform group operations
explicitly, we need explicit formulas for computing the sum of two points.
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2.2 The group law in algebraic terms

Let P and Q be two points on our elliptic curve E : y2 = x3 + Ax + B. We want to
compute the point R = P + Q by expressing the coordinates of R as rational functions of
the coordinates of P and Q. If either P or Q is the point O at infinity, then R is simply
the other point, so we assume that P and Q are affine points P = (x1, y1) and Q = (x2, y2).
There are two cases.

Case 1. x1 6= x2. The line PQ has slope m = (y2 − y1)/(x2 − x1), which yields the linear
equation y − y1 = m(x − x1) for PQ. This line is not vertical, so it intersects the curve
E in a third affine point −R = (x3,−y3). Plugging the equation for the line PQ into the
equation for the curve E yields

(m(x− x1) + y1)
2 = x3 +Ax+B.

Expanding the LHS and moving every term to the RHS yields a cubic equation

g(x) := x3 −m2x2 + · · · = 0,

where the ellipsis hides lower order terms in x. The monic cubic polynomial g(x) has two
roots x1, x2 ∈ k and therefore factors in k[x] as

g(x) = (x− x1)(x− x2)(x− x3),

where x3 ∈ k is the x-coordinate of the third point −R on the intersection of PQ and E.
Comparing the coefficient of x2 in the two expressions for g(x) shows that x1+x2+x3 = m2,
and therefore x3 = m2 − x1 − x2. We can then compute the y-coordinate −y3 of −R by
plugging this expression for x3 into the equation for PQ, and we have

m = (y2 − y1)/(x2 − x1),
x3 = m2 − x1 − x2,
y3 = m(x1 − x3)− y1,

which expresses the coordinates of R = P + Q as rational functions of the coordinates of
P and Q as desired. To compute P + Q = R, we need to perform three multiplications
(one of which is squaring m) and one inversion in the field k. We’ll denote this cost 3M+I;
we are ignoring the cost of additions and subtractions because these are typically negligible
compared to the cost of multiplications and (especially) inversions.

Case 2. x1 = x2. We must have y1 = ±y2. If y1 = −y2 then Q = −P and P +Q = R = 0.
Otherwise P = Q and R = 2P , and the line PQ is the tangent to P on the equation for E,
whose slope we can compute by implicit differentiation. This yields

2y dy = 3x2dx+Adx,

so at the point P = (x1, y1) the slope of the tangent line is

m =
dy

dx
=

3x21 +A

2y1
,

and once we know m we can compute x3 and y3 as above. Note that we require an extra
multiplication (a squaring) to compute m, so computing R = 2P has a cost of 4M+I.
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Remark 2.1. You might object that we have not formally defined implicit differentiation
over an arbitrary field, nor have we shown that this gives us the slope of the tangent line.
One can rigorously justify this (using Kähler differentials, for example), but it is easy to
verify that it works in our case: if you plug y = m(x − x1) + y1 into the curve equation
E : y2 = x3 + Ax + B using the slope m = (3x21 + A)/2y1 we computed using implicit
differentiation, you will find that x1 is a double root, and since the point (x1,−y1) does not
lie on the line L : y = m(x− x1) + y1 unless y1 = 0, the point (x1, y1) has multiplicity 2 in
the intersection E ∩ L, which implies that L is tangent to E at (x1, y1) as claimed.

With these equations in hand, we can now prove associativity as a formal identity,
treating x1, y1, z1, x2, y2, z2, x3, y3, z3, A,B as indeterminants subject to the three relations
implied by the fact that P , Q, R lie on the curve E. See the Sage worksheet

Lecture 2 Proof of associativity

for details, which includes checking all the special cases.
The equations above can be converted to projective coordinates by replacing x1, y1, x2,

and y2 with x1/z1, y1/z1, x2/z2, and y2/z2 respectively, and then writing the resulting
expressions for x3/z3 and y3/z3 with a common denominator. When P 6= Q we obtain

x3 = (x2z1 − x1z2)((y2z1 − y1z2)2z1z2 − (x2z1 − x1z2)2(x2z1 + x1z2))

y3 = (y2z1 − y1z2)((x2z1 − x1z2)2(x2z1 + 2x1z2)− (y2z1 − y1z2)2z1z2)− (x2z1− x1z2)3y1z2
z3 = (x2z1 − x1z2)3z1z2

and for P = Q we obtain

x3 = 2y1z1(A
2(z21 + 3x21)

2 − 8x1y
2
1z1)

y3 = A(z21 + 3x21)(12x1y
2
1z1 −A2(z21 + 3x21)

2)− 8y41z
2
1

z3 = (2y1z1)
3

These formulas are more complicated, but they have the advantage of avoiding inversions,
which are more costly than multiplications (in a finite field of cryptographic size inversions
may be 50 or even 100 times more expensive than multiplications). With careful reuse of
common subexpressions these formulas lead to a cost of 12M for addition (of distinct points)
and 14M for doubling.

2.3 Elliptic curves as abelian varieties

An abelian variety is a smooth projective variety G/k equipped with morphisms µ : G×G→
G and i : G → G and a k-rational point O such that for every field extension K/k the set
G(K) of K-rational points has the structure of a group with composition law given by µ,
inverses given by i, and O as the identity element.

We have not formally defined what it means to be a smooth projective variety, but
we have defined smooth projective plane curves C: these are defined by a polynomial in
f ∈ k[x, y, z] that is irreducible in k̄[x, y, z] such that there is no point P ∈ C(k̄) at which
the three (formal) partial derivatives of f simultaneously vanish. This example of a smooth
projective variety suffices for our present purpose, as it includes the case of an elliptic curve.
For the morphism µ we can take the rational maps defined by the polynomial expressions
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we derived above for x3, y3, z3 in terms of the projective coordinates x1, y1, z1 and x2, y2, z2,
and for the inverse morphism i we simply take the map (x : y : z) 7→ (x : −y : z).

In the case of elliptic curves, the group law is commutative by construction. In fact
commutativity holds for all abelian varieties [5, §4.3], which justifies their nomenclature,
even though it is not obviously implied by the definition; indeed, with affine algebraic
groups, which are defined exactly as abelian varieties but with the underlying algebraic
variety affine rather than projective, the group operation is typically not commutative.

Remark 2.2. We have shown that elliptic curves are abelian varieties of dimension one
(curves are algebraic varieties of dimension one by definition, regardless of their genus). We
have not shown that every abelian variety of dimension one is an elliptic curve, which is
beyond the scope of this course, but this is indeed the case (abelian varieties of dimension
one are smooth projective curves, but one needs to show that they have genus 1, and that
the group operation on the abelian variety necessarily coincides with that induced by the
elliptic curve group law when we take the identity element as our distinguished point).

2.4 Edwards curves

Various alternative models of elliptic curves other than Weierstrass equations have been
proposed over the years; each leads to different formulas for the group law that are ulti-
mately equivalent to the formulas for curves in Weierstrass form, after applying a suitable
isomorphism, but which may be more efficient to compute or have other advantages.

We give just one example here, a particular form of an Edwards curve [1, 2, 4]. Let a be
a non-square element of a field k whose characteristic is not 2. Then the equation

x2 + y2 = 1 + ax2y2 (1)

defines an elliptic curve with distinguished point (0, 1).

Remark 2.3. The plane projective curve defined by equation (1) has two singular points
at infinity, violating our requirement that an elliptic curve be smooth. However, this plane
curve can be desingularized by embedding it in P3(k). The points at infinity are then no
longer rational, and do not play a role in the group operation on E(k), whose elements can
all be uniquely represented as solutions (x, y) to equation (1) above.

If we define

w := (ax2 − 1)y, X :=
−2(w − 1)

x2
, Y :=

4(w − 1) + 2(a+ 1)x2

x3
,

then for any solution (x0, y0) to (1) with x0 6= 0 we obtain an affine point (X0, Y0) on the
elliptic curve E/k defined by the Weierstrass equation

Y 2 = (X − a− 1)(X2 − 4a).

(this is not a short Weierstrass equation, since the coefficient of X2 is not zero, but for
char(k) 6= 3 the substitution X = X ′ + a+ 1 yields a short Weierstrass equation).

If we map the solution (0, 1) to the point at infinity on E and the solution (0,−1) to the
point (a+ 1, 0) on E we obtain a bijection between the set of k-rational solutions to (1) and
E(k) (and similarly for all field extensions K of k, even though a may be a square in K).
It is straight-forward to check that this is in fact a bijection: if two points (x0, y0) map to
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the same value of X0 := X(x0, y0) they must be of the form (±x0, y0), but then the values
of Y0 := Y (±x0, y0) will differ in sign unless x0 = 0, but (0, 1) and (0,−1) are distinguished
by the fact that one is mapped to the point at infinity and the other is not.

It follows that we can use the group law on E (three points on a line to sum to zero) to
give the k-rational solutions to (1) the structure of a group isomorphic to E(k) (and similarly
if we replace k with an extension field K). One can then work out explicit formulas for this
group law in terms of coordinates on the Edwards curve (1). We shall omit the details of
these derivations (which are best done on using a computer algebra system) and simply
present the final result, which is quite pleasing.

The formula for adding points (x1, y1) and (x2, y2) in E(k) is

(x1, y1) + (x2, y2) =

(
x1y2 + x2y1

1 + ax1x2y1y2
,
y1y2 − x1x2

1− ax1x2y1y2

)
, (2)

which implies that the inverse of (x1, y1) is (−x1, y1). In contrast to the formulas for curves
in Weierstrass form, the formula in (2) is well defined for every pair of points (x1, y1) and
(x2, y2) in E(k).

To prove this, let us suppose for the sake of obtaining a contradiction that one the
denominators in (2) is zero for some pair of inputs (x1, y1), (x2, y2). Then we must have

(1 + cx1x2y1y2)(1− cx1x2y1y2) = 1− c2x21x22y21y22 = 0,

so c2x21x22y21y22 = 1, and therefore x1, x2, y1, y2 are all nonzero. Applying this and the curve
equation (twice) yields

x21 + y21 = 1 + cx21y
2
1 = 1 +

1

cx22y
2
2

=
x22 + y22
cx22y

2
2

.

By adding or subtracting 2x1y1 = ±2/(cx2y2) to both sides we can obtain

(x1 ± y1)2 =
(x2 ± y2)2

cx22y
2
2

,

with either choice of sign on the LHS (the sign on the RHS may vary, but in any case the
numerator of the RHS is a square). Since x1 and y1 are nonzero, one of x1 + y1 and x1− y1
is nonzero, and this implies that a is a square in k, but this is a contradiction, since we
assumed from the beginning that a is not a square in k.

Remark 2.4. The formula in (2) works over extension fields at all points where it is well
defined, but it is only for extensions K/k where c is not a square that it is guaranteed to
be well defined at every K-rational point (and if c is a square the desingularization of the
projective curve defined by (1) will have two rational points at infinity not handled by (1)).

As written, the group law involves five multiplications and two inversions (ignoring the
multiplication by c, which we can choose to be small), which is greater than the cost of the
group operation in Weierstrass form. However, in projective coordinates we have

x3
z3

=
z1z2(x1y2 + x2y1)

z21z
2
2 + cx1x2y1y2

,
y3
z3

=
z1z2(y1y2 − x1x2)
z21z

2
2 − cx1x2y1y2

.
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There are a bunch of common subexpressions here, and in order to compute z3, we need
a common denominator. Let r = z1z2, let s = x1y2 + x2y1, let t = cx1y2x2y1, and let
u = y1y2 − x1x2. We then have

x3 = rs(r2 − t), y3 = ru(r2 + t), z3 = (r2 + t)(r2 − t).

This yields a cost of 12M. If we compute s as s = (x1 + y1)(x2 + y2)− x1x2− y1y2, the cost
is reduced to 11M.

A simple Sage implementation of these formulas can be found here:

Lecture 2 Group law on Edwards curves

Because the expression in (2) is well defined at every point in E(k), we do not need
separate formulas for addition and doubling.1 Moreover, we don’t even need to check the
cases where one or both points is the identity element, or one is the negation of the other;
the same formula works in every case. Such formulas are said to be complete, and they
have two distinct advantages. First, they can be implemented very efficiently as a straight-
line program with no branching. Second, they protect against what is known as a side-
channel attack. If you are using different formulas for addition and doubling, it is possible
that an adversary may be able to externally distinguish these cases, e.g. by monitoring the
CPU (electronically, thermally, or even acoustically) and noticing the difference in the time
required or energy used by each operation. They can then use this information to break
a cryptosystem that performs scalar multiplication by an integer n that is meant to be
secret (as in Diffie-Hellman key exchange, for example), because the sequence of doubling
add adding used in scalar multiplication effectively encodes the binary representation of n.
Using complete formulas prevents a side channel attack because exactly the same sequence
of instruction is executed for every group operation.

Having said that, if you know you want to double a point and are not concerned about a
side-channel attack, there are several optimizations that can be made to the formulas above
(these include replacing 1 + cx2y2 with x2 + y2). This reduces the cost of doubling on an
Edwards curve to 7M, half the 14M cost of doubling a point in Weierstrass coordinates [1].

The explicit formulas database contains optimized formulas for Edwards curves and
various generalizations, as well as many other forms of elliptic curves. Operation counts and
verification scripts are provided with each set of formulas.

We should note that, unlike Weierstrass equations, not every elliptic curve can be defined
by an equation in Edwards form. In particular, an Edwards curve always has a rational point
of order 4, the point (1, 0), but most elliptic curves do not have a rational point of order 4.
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