18.783 Elliptic Curves Lecture 5

Andrew Sutherland

March 3, 2021

1

Isogenies (Lecture 4 recap)

Definition

An isogeny $\alpha \colon E \to E'$ is a surjective morphism that is also a group homomorphism, equivalently, a non-constant rational map that sends zero to zero.

Lemma

If E and E' are elliptic curves over k in short Weierstrass form then every isogeny $\alpha \colon E \to E'$ can be put in standard form

$$\alpha(x,y) = \left(\frac{u(x)}{v(x)}, \frac{s(x)}{t(x)}y\right),$$

where $u, v, s, t \in k[x]$ are polynomials with $u \perp v, s \perp t$. The roots of both v and t are the x-coordinates of the affine points in ker α . The degree of α is max $(\deg u, \deg v)$, and α is separable if and only if $(u/v)' \neq 0$.

Separable and inseparable isogenies

Lemma

Let k be a field of characteristic p. For relatively prime $u, v \in k[x]$ we have

$$(u/v)'=0 \quad \Longleftrightarrow \quad u'=v'=0 \quad \Longleftrightarrow \quad u=f(x^p) \text{ and } v=g(x^p) \text{ with } f,g\in k[x]$$

Proof

(first \Leftrightarrow): $(u/v)' = (u'v - v'u)/v^2 = 0$ iff u'v = v'u, and $u \perp v$ implies u|u', which is impossible unless u' = 0, and similarly for v. (second \Leftrightarrow): If $u = \sum_n a_n x^n$ then $u' = \sum n a_n x^n = 0$ iff $na_n = 0$ for n with $a_n \neq 0$, in which case $u = \sum_m a_{mp} x^{mp} = f(x^p)$ where $f = \sum_m a_m x^m$, and similarly for v. \Box

In characteristic zero the lemma says that u' = 0 if and only if $u \in k$, which means that every isogeny is separable, since isogenies are surjective morphisms.

Decomposing inseparable isogenies

Lemma

Let $\alpha \colon E \to E'$ be an inseparable isogeny over k with E and E' in short Weierstrass form. Then $\alpha(x,y) = \alpha(a(x^p), b(x^p)y^p)$ for some $a, b \in k(x)$.

Proof

This follows from the previous lemma, see Lemma 6.3 in the notes for details.

Corollary

Isogenies of elliptic curves over a field of characteristic p > 0 can be decomposed as

$$\alpha = \alpha_{\rm sep} \circ \pi^n,$$

for some separable α_{sep} , with $\pi : (x : y : z) \mapsto (x^p : y^p : z^p)$ and $n \ge 0$. The separable degree is $\deg_s \alpha := \deg \alpha_{sep}$, the inseparable degree is $\deg_i \alpha := p^n$.

First isogeny-kernel theorem

Theorem

The order of the kernel of an isogeny is equal to its separable degree.

First isogeny-kernel theorem

Theorem

The order of the kernel of an isogeny is equal to its separable degree.

Corollary

A purely inseparable isogeny has trivial kernel.

Corollary

In any composition of isogenies $\alpha = \beta \circ \gamma$ all degrees are multiplicative:

 $\deg \alpha = (\deg \beta)(\deg \gamma), \qquad \deg_s \alpha = (\deg_s)(\deg_s \gamma), \qquad \deg_i \alpha = (\deg_i \beta)(\deg_i \gamma).$

Second isogeny-kernel theorem

Definition

Let E/k be an elliptic curve. A subgroup G of $E(\bar{k})$ is defined over L/k if it is Galois stable, meaning $\sigma(G) = G$ for all $\sigma \in \operatorname{Gal}(\bar{k}/L)$.

Theorem

Let E/k be an elliptic curve and G a finite subgroup of $E(\bar{k})$ defined over k. There is a separable isogeny $\alpha \colon E \to E'$ with kernel G. The isogeny α and the elliptic curve E'/k are unique up to isomorphism.

Corollary

Isogenies of composite degree can be decomposed into isogenies of prime degree.

Isogeny graphs

Isogeny class 30a in the L-functions and modular forms database.

Isogeny graphs

Figure 3.3: Stacking, folding and attaching by an edge for $\mathfrak{p} = 431$ and $\ell = 2$. The leftmost component of $G_2(\mathbb{F}_p)$ folds, the other two components stack, and the vertices 189 and 150 get attached by a double edge.

© Sarah Arpin, Catalina Camacho-Navarro, et al. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/fairuse.

Image taken from <u>Adventures in Supersingularland</u> by Sarah Arpin, Catalina Camacho-Navarro, Kristin Lauter, Joelle Lim, Kristina Nelson, Travis Scholl, and Jana Sotáková.

Isogeny graphs

FIGURE 5. A whirlpool with two components.

© Leonardo Colò and David Kohel. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/fairuse</u>.

Image taken from Orienting supersingular isogeny graphs by Leonardo Colò and David Kohel.

Instant poll

How many 2-isogenies does the elliptic curve $E: y^2 = f(x)$ admit?

- A. Four, one for each point in $E[2] \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$.
- **B.** Three, one for each cyclic subgroup of order 2 in E[2].
- **C.** One for each rational point of order 2.
- **D.** None if f is irreducible, one if f splits 1-2, three if f splits completely.
- E. Infinitely many.

Constructing a separable isogeny from its kernel

Let E/k be an elliptic curve in Weierstrass form, and G a finite subgroup of $E(\bar{k})$. Let $G_{\neq 0}$ denote the set of nonzero points in G, which are affine points $Q = (x_Q, y_Q)$.

For affine points $P = (x_P, y_P)$ in $E(\bar{k})$ not in G define

$$\alpha(x_P, y_P) := \left(x_P + \sum_{Q \in G_{\neq 0}} \left(x_{P+Q} - x_Q \right), \ y_P + \sum_{Q \in G_{\neq 0}} \left(y_{P+Q} - y_Q \right) \right).$$

Here x_P and y_P are variables, x_Q and y_Q are elements of \bar{k} , and x_{P+Q} and y_{P+Q} are rational functions of x_P and y_P giving coordinates of P + Q in terms of x_P and y_P .

For $P \notin G$ we have $\alpha(P) = \alpha(P+Q)$ if and only if $Q \in G$, so $\ker \alpha = G$.

Vélu's formula for constructing 2-isogenies

Theorem (Vélu)

Let $E: y^2 = x^3 + Ax + B$ be an elliptic curve over k and let $x_0 \in \overline{k}$ be a root of $x^3 + Ax + B$. Define $t := 3x_0^2 + A$ and $w := x_0t$. The rational map

$$\alpha(x,y) := \frac{x^2 - x_0 x + t}{x - x_0}, \ \frac{(x - x_0)^2 - t}{(x - x_0)^2} y \bigg)$$

is a separable isogeny from E to $E': y^2 = x^3 + A'x + B'$, where A' := A - 5t and B' := B - 7w. The kernel of α is the group of order 2 generated by $(x_0, 0)$.

If $x_0 \in k$ then E' and α will be defined over k, but in general E' and α will be defined over k(A', B') which might be a quadratic or cubic extension of k.

Vélu's formula for constructing cyclic isogenies of odd degree

Theorem (Vélu)

Let $E: y^2 = x^3 + Ax + B$ be an elliptic curve over k and let G be a finite subgroup of $E(\bar{k})$ of odd order. For each nonzero $Q = (x_Q, y_Q)$ in G define

$$t_Q := 3x_Q^2 + A, \qquad u_Q := 2y_Q^2, \qquad w_Q := u_Q + t_Q x_Q,$$

$$t := \sum_{Q \in G_{\neq 0}} t_Q, \qquad w := \sum_{Q \in G_{\neq 0}} w_Q, \qquad r(x) := x + \sum_{Q \in G_{\neq 0}} \frac{t_Q}{x - x_Q} + \frac{u_Q}{(x - x_Q)^2} \right)$$

The rational map

$$\alpha(x,y) := (r(x), r'(x)y)$$

is a separable isogeny from E to $E': y^2 = x^3 + A'x + B'$, where A' := A - 5t and B' := B - 7w, with ker $\alpha = G$. If G is defined over k then so are α and E'.

Jacobian coordinates

Let us now work in the weighted projective plane, where x, y, z have weights 2,3,1. This means, for example, that x^3 and y^2 are monomials of the same degree.

The homogeneous equation for an elliptic curve E in short Weierstrass form is then

$$y^2 = x^3 + axz^4 + Bz^6.$$

In general Weierstrass form we have

$$y^{2} + a_{1}xyz + a_{3}yz^{3} = x^{3} + a_{2}x^{2}z^{2} + a_{4}xz^{4} + a_{6}z^{6},$$

Pro tip : a_i is the coefficient of the term containing z^i ; this is why there is no a_5 .

Jacobian coordinates

Let us now work in the weighted projective plane, where x, y, z have weights 2, 3, 1. This means, for example, that x^3 and y^2 are monomials of the same degree.

The homogeneous equation for an elliptic curve E in short Weierstrass form is then

$$y^2 = x^3 + axz^4 + Bz^6.$$

In general Weierstrass form we have

$$y^{2} + a_{1}xyz + a_{3}yz^{3} = x^{3} + a_{2}x^{2}z^{2} + a_{4}xz^{4} + a_{6}z^{6},$$

Pro tip : a_i is the coefficient of the term containing z^i ; this is why there is no a_5 .

In Jacobian coordinates the formulas for the group law look more complicated, but the formula for z_3 becomes very simple: $z_3 = x_1 z_1^2 - x_2 z_1^2$ when adding distinct points $(x_1: y_1: z_1)$ and $(x_2: y_2: z_2)$ and $z_3 = 2y_1 z_1$ when doubling $(x_1: y_1: z_1)$.

Division polynomials

If we apply the group law in Jacobian coordinates to an affine point P = (x : y : 1) on $E : y^2 = x^3 + Ax + B$ we can compute the rational map (in affine coordinates):

$$nP = \left(\frac{\phi_n}{\frac{2}{n}}, \frac{\omega_n}{\frac{3}{n}}\right).$$

where ϕ_n, ω_n, ψ_n are polynomials in $\mathbb{Z}[x, y, A, B]$ with degree at most 1 in y (we can reduce modulo $(y^2 - x^3 - Ax - B)$ to ensure this).

The polynomials ϕ_n and ψ_n^2 have degree 0 in y, so we write them as $\phi_n(x)$ and $\psi_n^2(x)$. Exactly one of ω_n and ψ_n^3 has degree 1 in y, so nP is effectively in standard form. (multiply the numerator by y^2 and the denominator by $x^3 + Ax + B$ if necessary).

Division polynomial recurrences

Definition

Let $E: y^2 = x^3 + Ax + B$ be an elliptic curve. Let $\psi_0 = 0$, and define $\psi_1, \psi_2, \psi_3, \psi_4$ as:

$$1 = 1,$$

$$2 = 2y,$$

$$3 = 3x^4 + 6Ax^2 + 12Bx - A^2,$$

$$4 = 4y(x^6 + 5Ax^4 + 20Bx^3 - 5A^2x^2 - 4ABx - A^3 - 8B^2).$$

We then define n for n > 4 via the recurrences

$$\begin{aligned} \mu_{2n+1} &= \psi_{n+2}\psi_n^3 - \mu_{n-1}\psi_{n+1}^3, \\ \mu_{2n} &= \frac{1}{2y}\psi_n(\psi_{n+2}\psi_{n-1}^2 - \psi_{n-2}\psi_{n+1}^2), \end{aligned}$$

We also define $\ _{-n}:=-\psi_n$ (and the recurrences work for negative integers as well).

Division polynomial recurrences

Definition

Having defined n for $E: y^2 = x^3 + Ax + B$ and all $n \in \mathbb{Z}$, we now define

$$\phi_n := x\psi_n^2 - \psi_{n+1}\psi_{n-1},$$

$$\omega_n := \frac{1}{4y}(\psi_{n+2}\psi_{n-1}^2 - \psi_{n-1}^2)$$

and one finds that $\phi_n = \phi_{-n}$ and $\omega_n = \omega_{-n}$.

It is a somewhat tedious algebraic exercise to verify that these recursive definitions agree with the definitions given by applying the group law. See this <u>Sage notebook</u>.

We rarely use ϕ_n and ω_n , but need to know the degree and leading coefficient of ϕ_n to compute the degree and separability of the multiplication-by-n map.

Multiplication-by-n maps

Theorem

Let E/k be an elliptic curve defined by the equation $y^2 = x^3 + Ax + B$ and let n be a nonzero integer. The multiplication-by-n map is defined by the affine rational map

$$[n](x,y) = \left(\frac{\phi_n(x)}{\frac{2}{n}(x)}, \frac{\omega_n(x,y)}{\frac{3}{n}(x,y)}\right)$$

Lemma

The polynomial $\phi_n(x)$ is monic of degree n^2 and the polynomial $\psi_n^2(x)$ has leading coefficient n^2 , degree $n^2 - 1$, and is coprime to $\phi_n(x)$.

Corollary

The multiplication-by-n map on E/k has degree n^2 and is separable if and only $p \nmid n$.

Instant poll

Are you looking forward to class on Monday March 8?

- A. Yes, I'm psyched to prove the structure theorem for torsion subgroups and learn about endomorphism rings!
- B. No, I will be taking a well-earned break Monday, it's a student holiday.
- **C.** No, but I am looking forward to class on Tuesday March 9, which is following a Monday schedule.
- D. No, but I am looking forward to class on Wednesday March 10. Some time before then I plan to watch the recorded video of the lecture that would have taken place on March 8 if it were not a holiday.

MIT OpenCourseWare <u>https://ocw.mit.edu</u>

18.783 / 18.7831 Elliptic Curves Spring 2021

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.