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What is an elliptic curve? 
x + yThe equation a 

2 

b2

2
= 1 defines an ellipse.2 

Like all conic sections, an ellipse is a curve of genus 0. 
Elliptic curves have genus 1, so an ellipse is not an elliptic curve. 

The area of this ellipse is ˇab. What is its circumference? 

A. ˇ(a + b)
B. 2ˇ(a + b)

p
C. 2ˇ ab
D. It’s complicated. . .

2



The circumference of an ellipse 
p

Let f(x) = b 1 − x2/a2 and put r = b/a. 
By the arc length formula, the circumference is Z Za ap p

4 1 + f 0(x)2 dx = 4 1 + r2x2/(a2 − x2) dx
0 0 

With the substitution x = at this becomes Z 1 
r

1 − e2t2 
4a dt,1 − t20 

p
where e = 1 − r2 is the eccentricity of the ellipse. 

This is an elliptic integral. The integrand u = u(t) satisfies 

2 2 u 2(1 − t2) = 1 − e t .

This equation defines an elliptic curve. 
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An elliptic curve over the real numbers 

With a suitable change of variables, every elliptic curve with real 
coeÿcients can be put in the standard form 

2 y = x 3 + Ax + B,

for some constants A and B. Below is an example of such a curve. 

2y = x3 − 4x + 6 
over R
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An elliptic curve over a finite field 

2y = x3 − 4x + 6 
over F197 
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An elliptic curve over the complex numbers 

An elliptic curve over C is a compact manifold of the form C/L, 
where L = Z + !Z is a lattice in the complex plane. 
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Definitions 

Definition 
An elliptic curve is a smooth projective curve of genus 1 with a 
distinguished point. 

Definition (more precise) 

An elliptic curve (over a field k) is a smooth projective curve of genus 1 
(defined over k) with a distinguished (k-rational) point. 

Not every smooth projective curve of genus 1 corresponds to an elliptic 
curve, it needs to have at least one rational point! 

2For example, the (desingularization of) the curve defined by y = −x4 − 1 
over Q is a smooth projective curve of genus 1 with no rational points. 
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The projective plane 

Definition 
The projective plane is the set P2(k) of all nonzero triples (x, y, z) 
in k3 modulo the equivalence relation (x, y, z) ˘ (�x, �y, �z).

The projective point (x : y : z) is the equivalence class of (x, y, z). 

Points of the form (x : y : 1) are called aÿne points. 
They form an aÿne (Euclidean) plane A2(k) embedded in P2(k). 

Points of the form (x : y : 0) are called points at infinity. 
These consist of the points (x : 1 : 0) and the point (1 : 0 : 0), which 
form the line at infinity: this is a copy of P1(k) embedded in P2(k). 

This is just a convention, we could have chosen (1 : y : z) to be our 
aÿne plane and called (0 : y : z) the line at infinity. 
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Plane projective curves 

Definition 
A plane projective curve Cf /k is a homogeneous polynomial f(x, y, z) 
with coeÿcients in k.1 The degree of Cf is the degree of f(x, y, z). 

For any field K containing k, the K-rational points of Cf form the set 

Cf (K) = {(x : y : z) 2 P2(K) | f(x, y, z) = 0}.

@f @f A point P 2 Cf (K) is singular if @f , , all vanish at P .@x @y @z 

Cf is smooth (or nonsingular) if there are no singular points in Cf (k ¯). 

Every polynomial equation g(x, y) = h(x, y) of total degree d determines
a projective curve Cf of degree d with f(x, y, 1) = g(x, y)− h(x, y).

We often specify projective curves with affine equations,
but we always mean to define a projective curve.

1Fine print: up to scalar equivalence and with no repeated factors in k̄[x, y, z]. 9



Examples of plane projective curves over Q

aÿne equation f(x, y, z) points at 1
y = mx + b

2x2 + y = 1 
2x2 − y = 1 

2y = x3 + Ax + B
2 2 2x2 + y = 1 − x y

y − mx − bz 
2x2 + y2 − z
2x2 − y2 − z

2y z − x3 − Axz2 − Bz3 

2 2 2 2x z2 + y z2 − z4 + x y

(1 : m : 0) 
none 
(1 : 1 : 0), (1, −1, 0) 
(0 : 1 : 0) 
(1 : 0 : 0), (0 : 1 : 0) 

The first four curves are smooth (provided that 4A3 + 27B2 6= 0). 
The last curve is singular (both points at infinity are singular). 
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Genus 

Over C, an irreducible projective curve is a connected compact manifold 
of dimension one. Topologically, it is a sphere with handles. 

The number of handles is the genus. 

genus 0 genus 1 genus 2 genus 3 

In fact, the genus can be defined algebraically over any field, not just C. 
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Newton polytopes 

Definition 
The Newton polytope of a polynomial f(x, y) = 

P 
aij x

iyj is the
convex hull of the set {(i, j) : aij 6= 0} in R2. 

An easy way to compute the genus of a (suÿciently general) irreducible 
curve defined by an aÿne equation f(x, y) = 0 is to count the integer 
lattice points in the interior of its Newton polytope: 

y2 = x3 +Ax+B.
12



Weierstrass equations 
Let A, B 2 k with 4A3 + 27B2 =6 0, and assume char(k) =6 2, 3. 

2The (short/narrow) Weierstrass equation y = x3 + Ax + B defines a 
smooth projective genus 1 curve over k with the rational point (0 : 1 : 0). 

In other words, an elliptic curve! 

Up to isomorphism, every elliptic curve over k can be defined this way. 

The general Weierstrass equation 

y 2 + a1xy + a3y = x 3 + a2x 
2 + a4x + a6 

works over any field, including those of characteristic 2 and 3. 
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Rational points in genus 0 

Let C be a smooth projective curve over Q of genus 0 with a rational 
point P , for example, consider the unit circle with P = (−1 : 0 : 1). 

Any line ` with rational slope t that passes through P intersects C in 
exactly one “other” point Q 2 C(Q) (when ` is a tangent, Q = P ). 
Conversely, for Q 2 C(Q) the line PQ is vertical or has rational slope t. 

Treating the vertical line as the point at infinity on the projective line 
P1(Q), there is a rational map from C(Q) and P1(Q), and vice versa. 

This applies to any conic, and in fact every genus 0 curve with a rational 
point is isomorphic to P1(Q), in other words, they are all the same curve! 
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Rational points in genus 1 

Now let E be an elliptic curve over Q defined by a Weierstrass equation. 

If P is a rational point and ` is a line through P with rational slope, 
it is not necessarily true that ` intersects E in another rational point. 

However, if P and Q are two rational points on E, then the line PQ
intersects E in a third rational point R (by Bezout’s theorem). 

Even better, it allows us to define a group operation on E(Q), 
or on E(k), for any elliptic curve E defined over a field k. 
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The elliptic curve group law 

Three points on a line sum to zero. 
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The elliptic curve group law 

With addition defined as above, the set E(k) becomes an abelian group. 

I The point (0 : 1 : 0) at infinity is the identity element 0. 
I The inverse of P = (x : y : z) is the point −P = (x : −y : z). 
I Commutativity is obvious: P + Q = Q + P . 
I Associativity is not so obvious: P + (Q + R) = (P + Q) + R. 

The computation of P + Q = R is purely algebraic. The coordinates 
of R are rational functions of the coordinates of P and Q, and can be 
computed over any field. 

By adding a point to itself repeatedly, we can compute 2P = P + P , 
3P = P + P + P , and in general, nP = P + · · · + P for any positive n. 

We also define 0P = 0 and (−n)P = −nP . 

We can thus perform scalar multiplication by any integer n. 
In other words, E(k) is a Z-module (just like any abelian group). 
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The group E(k)

When k = C, the group operation on E(C) ' C/L is just addition of 
complex numbers, modulo the lattice L. 

When k = Q things get much more interesting. The group E(Q) may be 
finite or infinite, but in every case it is finitely generated. 

Theorem (Mordell 1922) 

The group E(Q) is a finitely generated abelian group. Thus 

E(Q) ' T � Zr ,

where the torsion subgroup T is a finite abelian group corresponding to 
the elements of E(Q) with finite order, and r is the rank of E(Q). 

It may happen (and often does) that r = 0 and T is the trivial group. 
In this case the only element of E(Q) is the point at infinity. 
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The group E(Q)
The torsion subgroup T of E(Q) is well understood. 

Theorem (Mazur 1977) 

The torsion subgroup of E(Q) is isomorphic to one of the following: 

Z/nZ or Z/2Z � Z/2mZ,

where n 2 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12} and m 2 {1, 2, 3, 4}. 

© Getty Images. All rights reserved. This content is excluded from our Creative 
Commons license. For more information, see https://ocw.mit.edu/fairuse. 

Barry Mazur receiving the National Medal of Science
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Ranks of elliptic curves over Q

The rank r of E(Q) is not well understood. Things we do not know: 

1. Is there an e�ective algorithm to compute r?
2. Which values of r can occur?
3. How often does each possible value of r occur, on average?
4. Is there an upper limit, or can r be arbitrarily large?

We know a few things, and we can usually compute r when it is small. 
When r is large often the best we can do is a lower bound. 
The largest r known occurs for a curve with r � 28 due to Elkies (2006). 
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Ranks of elliptic curves over Q

The most significant thing we do know about r is a bound on its average 
value over all elliptic curves (suitably ordered). 

Theorem (Bhargava, Shankar 2010-2012) 

The average rank of all elliptic curves over Q is less than 1. 

In fact, we know the average rank is greater than 0.2 and less than 0.9. 
It is believed to be exactly 1/2 (half rank 0, half rank 1). 

Manjul Bhargava received the Fields Medal in 2016 for the work that led 
to this theorem (and which has many other applications). 
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The group E(Fp)
Over a finite field Fp, the group E(Fp) is necessarily finite. 
On average, the size of the group is p + 1, but it varies, depending on E. 
The following theorem of Hasse was originally conjectured by Emil Artin. 

Theorem (Hasse 1933) 

The cardinality of E(Fp) satisfies #E(Fp) = p + 1 − t, with |t| � 2pp. 

Emil Artin Helmut Hasse 
These images are in the public domain. 

The fact that E(Fp) is a group whose size is not fixed by p is unique 
to genus 1 curves. This is the basis of many useful applications. 

For curves C of genus g = 0, we always have #C(Fp) = p + 1. 
For curves C of genus g > 1, the set C(Fp) does not form a group. 
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Reducing elliptic curves over Q modulo p

2Let E/Q be an elliptic curve defined by y = x3 + Ax + B, and let p be a 
prime that does not divide the discriminant �(E) = −16(4A3 + 27B2). 

The elliptic curve E is then said to have good reduction at p. 

If we reduce A and B modulo p, we obtain an elliptic curve 
Ep := E mod p defined over the finite field Fp ' Z/pZ. 

Thus from a single curve E/Q we get an infinite family of curves, 
one for each prime p where E has good reduction. 

Now we may ask, how does #Ep(Fp) vary with p? 

We know #Ep(Fp) = p + 1 − ap for some integer ap with |ap| � 2
p
p. pSo let xp := ap/ p. Then xp is a real number in the interval [−2, 2]. 

What is the distribution of xp as p varies? 
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(click to animate – requires Adobe reader) 
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The Sato-Tate conjecture 

The Sato-Tate conjecture, open for nearly 50 years, was recently proved. 

Richard Taylor received the 2014 Breakthrough Prize in Mathematics for 
work that led to this the proof (and other results). 

Theorem (Taylor et al., 2006 and 2008) 

Let E/Q be an elliptic curve without complex multiplication. 
Then the xp have a semi-circular distribution. 
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The Birch and Swinnerton-Dyer conjecture 

There is believed to be a relationship between the infinite sequence of 
integers ap associated to an elliptic curve E/Q and the rank r. 

The L-function L(E, s) of an elliptic curve E/Q is a function of a 
complex variable s that “encodes” the infinite sequence of integers ap. 

For the “bad” primes that divide �(E), one defines ap to be 0, 1, or −1, 
depending on the type of singularity E has when reduced mod p. 

1Y Y X
−s)−1 1−2s)−1 −sL(E, s) = (1 − app (1 − app 

−s + p = ann 
bad p good p n=0 
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The Birch and Swinnerton-Dyer conjecture 
Based on extensive computer experiments (back in the 1960s!), 
Bryan Birch and Peter Swinnerton-Dyer made the following conjecture. 

Conjecture (Birch and Swinnerton-Dyer) 

Let E/Q be an elliptic curve with rank r. Then 

L(E, s) = (s − 1)r g(s),

for some complex analytic function g(s) with g(1) 6= 0, 1. In other 
words, r is equal to the order of vanishing of L(E, s) at 1. 

Byran Birch EDSAC-2 Sir Peter Swinnerton-Dyer
© Source unknown. © Computer Laboratory, University of Cambridge. © Source unknown. 
All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/fairuse. 

They later made a more precise conjecture that also specifies the
constant coeÿcient a0 of g(s) = 

P 
n�0 an(s − 1)n. 27
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Fermat’s Last Theorem 

Theorem (Wiles et al. 1995) 
n nxn + y = z has no positive integer solutions for n > 2. 

It suÿces to consider n prime. 
nSuppose an + bn = c with a, b, c > 0 and n > 3 (the case n = 3 was 

proved by Euler). Consider the elliptic curve Ea,b,c/Q defined by 

y 2 = x(x − a n)(x − bn).

Serre and Ribet proved that Ea,b,c is not modular. 
Wiles (with assistance from Taylor) proved that every semistable elliptic 
curve over Q, including E, is modular. Fermat’s Last Theorem follows. 
We now know that all elliptic curves E/Q are modular. 
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Applications of elliptic curves over finite fields 

There are several features that make elliptic curves over finite fields 
particularly well suited to practical applications: 

• There are many groups available, even when the finite field is fixed.
• The underlying group operation can be made very eÿcient.
• There are techniques to construct a group of any desired size.
• The representation of group elements appears to be opaque,

making E(Fq) a good candidate for a “black box group”,
one to which only generic group algorithms apply.

There are three particular applications that we will explore in some detail: 

1. factoring integers
2. primality proving
3. cryptography
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Factoring integers with elliptic curves 

The elliptic curve factorization method (ECM), due to Lenstra, is a 
randomized algorithm that attempts to factor an integer n using random 
elliptic curves E/Q with a known point P 2 E(Q) of infinite order. 

For each curve E, the algorithm attempts to find a scalar multiple of P
equivalent to zero in Ep(Fp), for some unknown prime p dividing n. 

The algorithm will succeed when #Ep(Fp) is suÿciently smooth, 
meaning that all its prime factors are small. 

The expected running time is subexponential in log p and otherwise 
polynomial in log n. No other algorithm with this property is known. 

When p is large (say log p > log2/3 n), faster algorithms are known, 
but these algorithms often use ECM as a subroutine. 
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Primality proving with elliptic curves 

Elliptic curve primality proving (ECPP) was introduced by Goldwasser 
and Kilian and later improved by Atkin and Morain, and by Bach. 

p
Let n be an integer that we believe to be prime and let b = n. 
Suppose one can find E/Q with the following property: for every primep
p|n, the group Ep(Fp) contains a point of order m > b + 1 + 2 b. 

p
The Hasse bound implies that p > b = n for all primes p|n. 
Therefore n can have only one prime divisor, itself! 

Heuristically, the expected running time of ECPP is quasi-quartic; in 
practical terms, it is the fastest general purpose algorithm known. 

The deterministic AKS algorithm has been proven to run in polynomial 
time, and randomized versions of AKS have expected running times that 
are quasi-quartic. But they are much slower than ECPP in practice. 
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The discrete log problem 
Problem: Given a point P 2 E(Fq) and Q = nP , determine n. 

This is known as the discrete log problem, a term that originates from 
the analogous problem in the multiplicative group F× q : given a 2 F× q and 

, determine n = loga b.b = an 

In the group F 
comparable result is known for the group (Fno E q 

, this problem can be solved in subexponential time, but × 
q

). 

In fact, the best known algorithm for solving the discrete log problem 
in E(Fq) takes time ( pq), which is fully exponential in log q. 

This allows cryptographic systems based on the elliptic curve discrete log 
problem (DLP) to use smaller key sizes than other systems. 

Of course we do not have any proof that the elliptic curve discrete log 
problem is hard, just as we have no proof that factoring integers is hard, 
(and we know that for quantum computers, both problems are easy). 
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Diÿe-Hellman key exchange 

Diÿe and Hellman proposed a method for two parties to establish a 
secret key over a public network, based on the discrete log problem. 
Their method is generic, it works in a cyclic subgroup of any given group. 

Let E/Fp be an elliptic curve with a point P 2 E(Fp). 
Alice and Bob, who both know E and P , establish a secret S as follows: 

1. Alice chooses a random integer a and sends aP to Bob.
2. Bob choses a random integer b and sends bP to Alice.
3. Alice computes abP = S and Bob computes baP = S.

The coordinates of S depend on the random integer ab and can be 
hashed to yield a shared secret consisting of log2 ab random bits.2

An eavesdropper may know E, P , aP and bP , but not a, b, or S. 
It is believed that computing S from these values is as hard as computing 
discrete logarithms in E(Fp) (but this is not proven). 

2As written, this protocol is vulnerable to a man-in-the-middle attack. 33



Ephemeral Diÿe-Hellman (ECDHE) and ECDSA 
With ephemeral Diÿe-Hellman (ECDHE) the elliptic curve E is fixed, 
but a new base point P is chosen for each key exchange. 

This provides what is known as perfect forward secrecy, which 
compartmentalizes the security of each communication session 
(breaking one session should not make it easier to break others). 

ECDHE was adopted by Google in late 2011 and has become the most 
widely used key exchange protocol. It is the default protocol in TLS 1.2 
and later, which is now used to secure the majority of all internet traÿc. 

If you look at the security details of your web browsers connection to 
your favorite internet site, you are very likely to find ECDHE listed as the 
key exchange protocol, with either RSA, DSA, or ECDSA used for 
authentication (this protects against man-in-the-middle attacks). 

ECDSA is a digital signature scheme based on the elliptic curve discrete 
logarithm problem; it is used by Bitcoin and many other cryptocurrencies. 
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Pairing-based cryptography 

×Elliptic curves also support bilinear pairings " : E(Fp) × E(Fp) ! F ,p 

which satisfy "(aP, bQ) = "(P, Q)ab. Pairings facilitate some more 
sophisticated cryptographic protocols. 

For pairing friendly elliptic curves E/Fp, one can define a pairing 
" : E(Fp) × E(Fp) ! Fpk , where #E(Fp) divides pk − 1 with k small. 
As an example, here is how Alice, Bob, and Carol can establish a shared 
secret using a single round of communication (as proposed by Joux). 

1. Alice chooses a random a and sends aP to Bob and Carol,
Bob chooses a random b and sends bP to Alice and Carol,
Carol chooses a random c and sends cP to Alice and Bob.

2. Alice computes "(bP, cP )a = "(P, P )bca = S,
Bob computes "(aP, cP )b = "(P, P )acb = S,
Carol computes "(aP, bP )c = "(P, P )abc = S.

An eavesdropper may know E, P , aP , bP , cP , but not a, b, c or S. 
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Isogeny-based cryptography 
Both factoring and the discrete logarithm problem can be solved in 
polynomial-time on a quantum computer. 

SIDH is a variant of the Diÿe Hellman protocol that replaces scalar 
multiplication with a walk on a supersingular isogeny graph: 

Alice and Bob, who both know a public supersingular elliptic curve 
E/Fp2 , establish a secret S as follows: 

1. Alice chooses a random a encoded in base-2 and computes Ea by
taking an a-walk in the 2-isogeny graph; she sends Ea to Bob.3

2. Bob choses a random b encoded in base-3 and computes Eb by
taking a b-walk in the 3-isogeny graph; he sends Eb to Alice.4

3. Alice computes (Eb)a and Bob computes (Ea)b.
The j-invariant j((Eb)a) = j((Ea)b) 2 Fp is their shared secret S.2 

No eÿcient algorithm is known for computing j((Eb)a) = j((Ea)b) given 
E, Ea, Eb, not even on an quantum computer. 

3Alice/Bob also sends the images of two points on E under the isogeny. 36
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