
18.783 Elliptic Curves Spring 2021

Problem Set #11

Description: These problems are related to material covered in Lectures 17–21.

Instructions: Solve any combination of Problems that sum to 100 points. Problem 1
part (d) uses a result from Problem 3 part (f) of Problem Set 10 — e-mail me if you
need this result. Your solutions are to be written up in latex and submitted as a pdf-file.

Collaboration is permitted/encouraged, but you must identify your collaborators or
your group, as well any references you consulted that are not listed in the syllabus or
lecture notes. If there are none write “Sources consulted: none” at the top of your
solutions. Note that each student is expected to write their own solutions; it is fine to
discuss the problems with others, but your writing must be your own.

The first person to spot each non-trivial typo/error in the problem sets or lecture
notes will receive 1-5 points of extra credit.

In cases where your solution involves code, please either include your code in your
write up, or (better) the name of a notebook in your 18.783 CoCalc project containing
you code (use a separate notebook for each problem).

Problem 1. Mapping the CM torsor (49 points)

Let O be an imaginary quadratic order of discriminant D, and let p > 3 be a prime
that splits completely in the ring class field of O, equivalently, a prime of the form
4p = t2 − v2D. As explained Lecture 17, the set

EllO(Fp) = {j(E/Fp) : End(E) ' O}

is a cl(O)-torsor. This means that for any j1, j2 ∈ EllO(Fp), there is a unique α ∈ cl(O)
for which αj1 = j2. This has many implications, two of which we explore in this problem.

First and foremost, the cl(O)-action can be used to enumerate the set EllO(Fp), all
we need is a starting point j0 ∈ EllO(Fp). In this problem we will “cheat” and use the
Hilbert class polynomial HD(X) to do this (in Problem 2 we will find a starting point
ourselves). The polynomial HD(X) splits completely in Fp[X], and its roots are precisely
the elements of EllO(Fp). We could enumerate EllO(Fp) by factoring HD(X) completely,
but that would not let us “map the torsor”. We want to construct an explicit bijection
from cl(O) to EllO(Fp) that is compatible with the group action.

Let us start with a simple example, D = −1091. The class number h(D) = 17 is
prime, so cl(D) is cyclic and every non-trivial element is a generator. For our generator,
let α be the class of the prime form (3, 1, 91), which acts on EllO(Fp) via cyclic isogenies
of degree 3: each j ∈ EllO(Fp) is 3-isogenous1 to the j-invariant αj. This means that
Φ3(j, αj) = 0 for all j ∈ EllO(Fp), where Φ3(X,Y ) = 0 is the modular equation for X0(3).

To enumerate EllO(Fp) as j0, j1, j2, . . ., with jk = αkj0, we start by identifying j1 is
a root of the univariate polynomial Φ3(j0, Y ). Now

(
D
3

)
= 1 in this case, so by part (d)

of problem 3 on Problem Set 10 there are two ideals of norm 3 in cl(D), both of which
act via 3-isogenies; the other one corresponds to the form (3,−1, 91), the inverse of α in

1When we say that j1 and j2 are 3-isogenous, we are referring to isomorphism classes of elliptic curves
over Fp. There are 3-isogenous curves E1/Fp and E2/Fp with j1 = j(E1) and j2(E2), but one must be
careful to choose the correct twists.
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cl(O). Thus there are at least two roots of Φ3(j0, Y ) in Fp, but provided that we pick
the prime p so that 3 does not divide v, there will be only two Fp-rational roots.

There are methods to determine which of of these two roots “really” corresponds
to the action of α, but for now we disregard the distinction between α and α−1; this
ultimately depends on how we embed Q(

√
−1091) into C in any case. Let us arbitrarily

designate one of the Fp-rational roots of Φ3(j0, Y ) as j1. To determine j2, we now consider
the Fp-rational roots of Φ3(j1, Y ). Again there are exactly two, but we already know
one of them: j0 must be a root, since Φ3(X,Y ) = Φ3(Y,X). So we can unambiguously
identify j2 as the other Fp-rational root of Φ3(j1, Y ), equivalently, the unique Fp-rational
root of Φ3(j1, Y )/(Y − j0).

(a) Let D = −1091, and let t be the least odd integer greater than 1000N for which
p = (t2−D)/4 is prime, where N is the last three digits of you student ID. Use the
Sage function hilbert class polynomial to compute HD(X), then pick a root
j0 of HD(X) in Fp (you will need to coerce HD into the polynomial ring Fp[X] to
do this). Using the function isogeny nbrs implemented in this Sage notebook,
enumerate the set EllO(Fp) as j0, j1, j2, . . . by walking a cycle of 3-isogenies starting
from j0, as described above, so that jk = αkj0 (assuming that your arbitrary choice
of j1 was in fact j1 = αj0). You should find that the length of this cycle is 17, since
α has order 17 in cl(D). Finally, verify that the you have actually enumerated all
the roots of HD(X).

(b) Let D, p, and j0 be as in part (a), and let β ∈ cl(D) be the class of the prime form
(7, 1, 39). Compute k = logα β. Enumerate EllO(Fp) again as j′0, j

′
1, j
′
2, . . ., starting

from the same j′0 = j0 but this time use the action of β, by walking a cycle of 7-
isogenies. Rather than choosing j′1 arbitrarily, choose j′1 in a way that is consistent
with the assumption j1 = αj0 in part (a): i.e., choose j′1 so that j′1 = βj0 = αkj0 =
jk. Then verify that for all m = 1, 2, 3, . . . , 16 we have j′m = βmj0 = αkmj0 = jkm,
where the subscript km is reduced modulo |α| = 17.

You should find the results of parts (a) and (b) remarkable (astonishing even). A
priori, there is no reason to think that there should be a relationship between a cycle of
3-isogenies and a cycle of 7-isogenies.

The fact that we can use the modular polynomials Φ` to enumerate the roots of HD

is extremely useful. It allows us to enumerate the roots of polynomials with degrees in
the millions, simply by finding roots of polynomials of very small degree (typically one
can use Φ` with ` < 20). We can also use the CM torsor to find zeros of Φ`, even when `
is ridiculously large.

(c) Let ` be the least prime greater than 10100N for which
(
D
`

)
= 1, where N is the

last three digits of your student ID. Determine the Fp-rational roots of Φ`(j0, Y ).

For reference, the total size of the polynomial Φ` ∈ Z[X,Y ] is roughly 6`3 log ` bits,
which is more than 10300 bits in the problem you just solved. Even reduced modulo p,
it would take more than 10200 bits to write down the coefficients of this polynomial
(for comparison, there are fewer than 10100 atoms in the observable universe). This
example might seem fanciful, but an isogeny of degree 10100 is well within the range of
cryptographic interest.
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Now for a slightly more complicated example, where the class group is not a cyclic
group of prime order. LetD = −5291. In this case h(D) = 36 and the class group cl(D) is
isomorphic to Z/2Z×Z/18Z. In Problem 3 of Problem Set 10 you computed a polycyclic
presentation ~α, r(~α), s(~α) for cl(D), which should involve generators ~α = (α1, α2, α3),
of norms 3, 5, and 7. If you did not solve Problem 3 of Problem Set 10, you can email
me for a solution.

(d) Let D = −5291, and let t be the least odd integer greater than 1000N for which
p = (t2 −D)/4 is prime, where N is the last three digits of you student ID. Using
the polycyclic presentation for cl(D), enumerate EllO(D) starting from a j-invariant
j0 obtained as a root of HD. Your enumeration j0, j1, j2, . . . , j35 should have the
property that the element β ∈ cl(O) whose action sends j0 to jk satisfies k = log~α β,
subject to the assumption that j1 = α1j0.

Here are a few tips on part (d). You will compute j0, . . . , jr1−1 using 3-isogenies, but
to compute jr1 you will need to compute a 5-isogeny from j0. When choosing jr1 as a
root of Φ5(j0, Y ), make this choice consistent with the assumption j1 = α1j0 by using
the fact that s2 = log~α α

r2
2 (assuming s2 6= 0, which is true in this case). When you

go to compute jr1+1, you will need to choose a root of Φ3(jr1 , Y ). Here you can make
the choice consistent with the fact that cl(O) is abelian, so the action of α1α2 should
be the same as the action of α2α1. Similar comments apply throughout; any time you
start a new isogeny cycle, you must make a choice, but you can make all of your choices
consistent with your initial choice of j1.

I don’t recommend writing code to make all these choices (it can be done but it is a
bit involved), it will be easier and more instructive to work it out by hand, using Sage
to enumerate paths of `-isogenies as required (you can use the function isogeny path
in this Sage notebook).

Problem 2. Computing Hilbert class polynomials (49 points)

In this problem you will implement an algorithm to compute Hilbert class polynomials
using an explicit CRT approach and then use it to construct an elliptic curve over a
finite field Fq via the CM method. The plan is to compute HD modulo primes p that
split completely in the ring class field for the order O of discriminant D (primes of the
form 4p = t2 − v2D). If we do this for a sufficiently large set of primes S, we can use
the Chinese remainder theorem to explicitly determine the coefficients of HD. For any
prime (or prime power) q that satisfies the norm equation 4q = t2 − v2D we can then
use a root of HD in Fq to construct an elliptic curve E/Fq with End(E) = O, and in
particular, with trace of Frobenius ±t and q+1± t rational points; by taking a quadratic
twist we can adjust the sign of t.

We will use primes p that are small enough for us to readily find an element j0 ∈
EllO(Fp) by trial and error. Note that this will typically not be true of our target
prime q, particularly in cryptographic applications; we will use q = 266 + 9 which is not
of cryptographic size but still large enough to make trial and error an infeasible method
for constructing an elliptic curve with End(E) = O.

Once we know one j0 ∈ EllO(Fp), we can enumerate EllO(Fp) using a polycyclic
presentation for cl(O), as described in Problem 3 of Problem Set 10. To make our lives
simpler, in this problem we will choose O so that cl(O) is a cyclic group of prime order
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generated by an ideal of small prime norm so that we don’t have to compute a polycyclic
presentation. This gives us a list of the roots of HD mod p, and we can then compute

HD(X) =
∏

j∈EllO(Fp)

(X − j) mod p. (1)

Once we have computed the coefficients of HD mod p for sufficiently many primes p, we
can use the CRT to compute the integer coefficients of HD ∈ Z[X].

But our goal is to construct E/Fq, which means we actually only need HD mod q.
Rather than computing HD ∈ Z[X] and then reducing modulo q, we will instead apply
an explicit form of the CRT that allows us to compute HD mod q directly from the
coefficients of HD mod p for sufficiently many small primes p. This saves space (and a
little bit of time), because for large |D| the integer coefficients of HD will typically be
much larger than q (possibly by millions of bits).

(a) Write a program that, given a prime p > 36 and an integer t finds an elliptic curve
E/Fp satisfying #E(Fp) = p + 1 ± t. Do this by generating curves E/Fp with
random coefficients A and B satisfying 4A3 + 27B2 6= 0. For each curve, pick a
random point P ∈ E(Fp) (using the random point() method), and test whether
(p + 1)P = ±tP . If not, discard the curve and continue. Otherwise, compute the
order m of P using the generic fast order algorithm provided by the Sage function
sage.groups.generic.order from multiple. If m > 4

√
p than #E(Fp)

must be p+ 1± t, and we have a curve we can use. Otherwise, try again.

Having found a curve E/Fp whose Frobenius endomorphism π has trace ±t, where
4p = t2−v2D, then Z[π] and End(E) must lie in the maximal order of K = Q(

√
D). As-

suming that D is fundamental, the order O we are interested in is the maximal order OK ,
but unless Z[π] = OK it is unlikely that End(E) = OK . On the next problem set we will
see how to find a curve isogenous to E with endomorphism ring O, but for now we will
simply choose primes p that have v = 1, in which case Z[π] = End(E) = OK .2 With this
provision, (a) gives us j0 ∈ EllO(Fp). We can then enumerate EllO(Fp) as in Problem 1
and apply (1) to compute HD(X) mod p.

Once we have computed HD mod p for all the primes in S, we can apply the Chinese
remainder theorem to compute HD ∈ Z[X]. Let p1, . . . , pm be the primes in S, and let
M =

∏
p∈S p. Let Mi = M/pi, and let aiMi ≡ 1 mod pi. Let c denote a coefficient of

HD, and let ci = c mod pi be the corresponding coefficient of HD mod pi.

(b) Prove that

c ≡
m∑
i=1

ciaiMi mod M. (2)

Provided that M is big enough, say M ≥ 2B, where B is an upper bound on |c|, this
congruence uniquely determines the integer c. Using complex analytic methods, one can
establish very accurate bounds B on the absolute values of the coefficients of HD(X).

2With v = 1 fixed, we cannot actually prove that any such primes exist, not even under the generalized
Riemann hypothesis (GRH), so this does not yield a true algorithm in the sense that we cannot prove it
terminates on all inputs. Relaxing the constraint v = 1 yields an algorithm that is guaranteed to work,
and under GRH, one can prove it is faster than any other method known.
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(c) Prove that if M > 4B and r is the nearest integer to
∑
ciai/pi, then in fact

c =
m∑
i=1

ciaiMi − rM, (3)

and show that if we put e := dlog2me + 2 and define ri := b2eciai/pic, then we
have r = b3/4 + 2−e

∑
ric (in other words, we only need to use e = O(logm) bits of

precision when computing the sum
∑
ciai/pi in order to get the correct value of r).

The fact that (3) is an identity in Z means that it also holds modulo q; this means that
as we compute the coefficients ci of HD mod pi it suffices to just accumulate the partial
sums of ciaiMi modulo q and the partial sum of the ri (we do want to compute the sums
of the ri in Z, but they are tiny, typically much smaller than q). As each polynomial
HD mod pj is computed, we will update two running totals for each coefficient c as we
go, one for

∑
i ciaiMi mod q and one for

∑
i ri.

We are now ready to compute HD(X) mod q, where q = 266 + 9, and use it to
construct an elliptic curve E/Fq. We will use the discriminant D = −2267 with class
number h(D) = 11; the class group is necessarily cyclic, generated by a primeform
of norm 7. The coefficients of HD can be analytically proven to have absolute values
bounded by B = 2520 via [6, Lemma 8]. As you can check using the norm equation
function in this Sage notebook, we have 4q = t2 − v2D, and for the positive choice of t,
the integer N = q + 1 + t is prime. Our goal is to construct E/Fq with #E(Fq) = N .

(d) Select a set S of primes p1, . . . , pm of the form 4p = (t2−D) such that
∏
p∈S p > 4B.

Then compute the ai mod pi as integers in [0, p− 1] and the products aiMi modulo
q as integers in [0, q−1] for each 1 ≤ i ≤ m. For each prime pi in S do the following:

1. Find j0 ∈ EllO(Fpi) using (a).

2. Enumerate EllO(Fpi) by walking an 11-cycle of 7-isogenies (as in Problem 1, you
can use the isogeny nbrs function in this Sage notebook to do this).

3. Compute HD mod pi via (1).

4. Update the sums
∑

i ciaiMi mod q and
∑

i ri for each coefficient of HD mod pi.

When all the primes pi ∈ S have been processed, for each coefficient c of HD mod q,
compute r and then c by applying (3) modulo q via (c).

In your answer, list the primes pi ∈ S and give a summary of the computation for
the first 3 primes in S, including the j-invariant j0, the enumeration of EllO(Fp) (in
order), and the polynomial HD(X) mod p, as well as the end result HD mod q.

Here are A few tips for implementing (d). You will need about 40 primes for the
set S, the smallest of which should be 569. When debugging your code, you may find it
helpful to use Sage to compute the Hilbert class polynomial HD and compute its roots
in Fpi , so that you know exactly the values of EllO(Fpi) that you should be getting. You
may find that your algorithm in (a) struggles a bit with some of the larger pi ∈ S, but it
should never take more than 10 or 20 seconds or so to find a suitable E, and in most cases
it should take less than a second. Once you get it working the entire computation for
(d) should only take a few minutes. This can be reduced to a few seconds by modifying
the algorithm to allow 4pi = t2i −v2iD with vi not necessarily equal to one and modifying
the algorithm in (a) to use isogeny-volcano climbing to obtain E with End(E) ' O in
situations where this is not already forced by ti, but you are not required to do this.

5

https://cocalc.com/share/public_paths/4283f59e7b759b1779c3a6689ed086de9b425835
https://cocalc.com/share/public_paths/e2a45f293be2d00354622ee999c2dc3801c0caba


(e) Compute a root j0 ∈ Fq of the polynomial HD mod q you computed in (d), construct
an elliptic curve E/Fq with j(E) = j0 and test whether #E(Fq) = N by checking
that NP = 0 for a random nonzero point P ∈ E(Fq). If this is not the case, replace
E with its quadratic twist (you can use the quadratic twist method in Sage)
and check again. Include a defining equation for your final E in your write-up.

Problem 3. Atkin-Morain ECPP (49 points)

The bottleneck in the Goldwasser-Kilian elliptic curve primality proving algorithm (Al-
gorithm 11.15 in Lecture 11) is counting points on randomly generated elliptic curves in
the hope of finding one with a suitable number of points (namely, the product of a large
prime and a smooth cofactor). Atkin and Morain proposed an alternative approach that
uses the CM method to construct an elliptic curve that is guaranteed to have a suitable
number of points [1]. This yields a much faster algorithm, with a heuristic running time
of Õ(n4), where n is the size of the input (in bits) and the Õ notation ignores polyloga-
rithmic factors of n. While its expected running time is not provably polynomial time,
in practice it is substantially faster than even randomized versions of the AKS algorithm
that also run in Õ(n4) expected time [2], and is the current method of choice for proving
the primality of large primes that are not of a special form. All the primality proving
records listed on this top 20 list were proved using this algorithm.

Given a smoothness bound B and probable prime p, the algorithm proceeds as follows:

1. Select a fundamental discriminant D < −4 for which 4p = t2 − v2D has a solution
(t, v) such that m = p+ 1± t can be factored as cq, where c > 1 is B-smooth and
q > (p1/4 + 1)2 is a probable prime.3

2. Find a root j of HD mod p and use it to construct an elliptic curve E/Fp in
Weierstrass form y2 = x3 + ax+ b, where a = 3j(1728− j) and b = 2j(1728− j)2.
If unable to find a root of HD mod p within, say, twice the expected amount of
time, perform a Miller-Rabin test on p. If it fails then report that p is not prime
and otherwise repeat this step.

3. Generate a random Q ∈ E(Fp) with P = cQ 6= 0 and verify that qP = 0. If
not, replace E with a quadratic twist Ẽ : y2 = x3 + d2Ax + d3B, for some non-
residue d, and repeat this step. If the verification qP = 0 fails for E and its twist,
or if anything else goes wrong (e.g., a square-root computation or inversion fails),
report that p is not prime.

4. Output the certificate (p,A,B, x, y, q), where P = (x, y).

As with the Goldwasser-Kilian algorithm, if q is larger than a bound T ≈ (log p)4

one then proceeds to construct a primality certificate for q using the same algorithm,
producing a chain of primality certificates that terminates with a prime q ≤ T whose
primality is verified by trial division (see Lecture 12 for details).

For a fixed fundamental discriminant D < 0, we know from the Chebotarev Density
Theorem that the proportion of primes p that split completely in the ring class field L
for the order of discriminant D is 1/Gal(L/Q) = 1/(2h(D)), where h(D) is the class

3In practice one also uses D = −3,−4 but for simplicity we will ignore these.
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number. We also know that h(D) ∼
√
|D| as |D| → ∞, and that a constant proportion

of all integers D < 0 are fundamental discriminants.4

(a) Assuming the integers m = p+ 1± t in step 1 are as likely as random integers to of
the form 2q with q prime, give a heuristic upper bound on the absolute value of the
discriminant D chosen in step 1 of the form Õ(ne) for some e > 0, where n = log p.5

(b) Using your heuristic estimate in (a), compute upper bounds on the expected running
times of each of steps i = 1, 2, 3 of the form Õ(nei); you can assume that the time to
compute HD(X) is quasi-linear in |D|, and that the time to solve the norm equation
is bounded by the expected time to compute a square root of D modulo p using a
probabilistic algorithm (as required by Cornacchia’s algorithm, see Problem Set 2).
Use these bounds to heuristically bound the expected complexity of proving that p
is prime (assuming it is), including the cost of recursively proving that q is prime.

You should find that your heuristic complexity bound is substantially better than the
Õ(n7) complexity of the Goldwasser-Kilian algorithm that you analyzed in Problem
Set 6, but worse than Õ(n4), and that the cost is dominated by step 1.

In order to obtain an Õ(n4) bound we need to exploit an idea due to Jeffrey Shallit.
The key idea is to avoid the need to compute square roots of so many D’s modulo p by
restricting to discriminants of the form D = −`1`2, where `1 and `2 are primes in the set
S := {` ≤

√
M : ` is prime} with M chosen according to the heuristic bound on |D| you

computed in part (a). The strategy is to compute square roots of ±` modulo p for all the
primes in S and use these to efficiently construct square roots of D = −`1`2 modulo p.

(c) Using the fact that if it is given the square root of D modulo p, Cornacchia’s algo-
rithm can solve the norm equation in quasi-linear time using a fast-GCD approach,
derive a new heuristic estimate for the expected running time of step 1 that exploits
Shallit’s idea (include the cost of computing square roots of the primes ` ∈ S). Use
this to obtain a heuristic Õ(n4) bound on the total expected time to prove that p is
prime using the Atkin-Morain approach.

(d) Implement the Atkin-Morain ECPP algorithm described above in Sage and use it
to construct a primality proof for the least probable prime p greater than 2500N ,
where N is the last 4 digits of your student ID, using the smoothness bound B = 216.
You are not required to implement Shallit’s optimization, as it won’t make much of
a difference for primes of this size.

You can use the norm equation function in this Sage notebook to solve the norm
equations in step 1. In your implementation, create the finite field Fp in Sage using
GF(p,proof=false) to prevent Sage from trying to prove that p is prime. Use
the is pseudoprime function in Sage to test whether q is a probable prime after
using trial-division to remove the B-smooth factor c. You needn’t implement the
Miller-Rabin test in step 2 (it is very unlikely to be necessary).

In your write-up, do not list all the primality certificates in full. Just give a table
that lists the discriminant D, the j-invariant of the elliptic curve E, and the primes q
for each certificate, as well as the time spent constructing each certificate.

4Any square free D ≡ 1 mod 4 certainly works, and this set already has density 3/(2π2).
5Requiring m = 2q might seem overly restrictive, since the algorithm only requires m = cq with c > 1

B-smooth, but it makes no difference in the value of e (unless B is unrealistically large).
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Problem 4. Surjectivity of Mod-` Galois Representations (49 points)

This problem is a continuation of Problem 2 of Problem Set 6 and Problem 4 of Problem
Set 9. You don’t need to have solved those problems in order to do this one, but you
will want to at least read through them. In particular, you will need the classification
theorem proved in Problem 4 of Problem Set 9 (which you can assume).

Let ` be an odd prime and let V be a 2-dimensional F`-vector space, with automor-
phism group GL(V ), as in the previous problem, and let ϕ : GL(V ) � PGL(V ) denote
the quotient map.

(a) Let s be an element of GL(V ) whose order is not divisible by `, let u = tr(s)2/ det(s),
and let r be the order of ϕ(s) in PGL(V ). Prove that u = ζr + ζ−1r + 2, for some
primitive rth root of unity ζr ∈ F×

`2
.

(b) Suppose that we are in case (iii) of the classification theorem, in which G is a
subgroup of GL(V ) whose image in PGL(V ) is isomorphic to A4, S4, or A5. Prove
that for all elements s ∈ G, u = tr(s)2/ det(s) is equal to 4, 0, 1, 2 or satisfies
u2 − 3u+ 1 = 0.

Now we are ready to use this classification to deduce some results about surjectivity
of the mod-` Galois representation

ρE,` : Gal(Q(E[`])/Q)→ Aut(E[`]) ' GL(V ),

of an elliptic curve E/Q. As in Problem Set 6, for each prime p 6= ` of good reduction
for E we pick a Frobenius element Frobp ∈ Gal(Q(E[`])/Q) which is uniquely determined
only up to conjugacy. As shown on Problem 2 of Problem Set 6, every element of F×`
arises as the determinant of ρE,`(Frobp) for some prime p (infinitely many in fact).

(c) Let G := im ρE,` ⊆ GL(V ). Show that the image H of the G in PGL(V ) contains a
(normal) subgroup of index 2. Deduce that if G 6= GL(V ) then one of the following
is true:

1. G is contained in the normalizer of a Cartan subgroup;

2. G is contained in a Borel subgroup;

3. G is exceptional and H = S4.

It is a longstanding conjecture that for all ` > 37 we have G = GL2(F`) for all elliptic
curves E/Q without CM. This conjecture remains open, but we know that the only
possible exceptions occur when G is contained in the normalizer of a non-split Cartan.
Given a particular E/Q without CM and a particular prime ` it is not hard to verify
that G = GL2(F`), when this is in fact the case.6

(d) Let G := im ρE,` ⊆ GL(V ). Determine three types of elements (specified by their
trace and determinant) such that if G contains these elements, then G = GL2(F`).

(e) Let E be the elliptic curve
y2 + y = x3 − x2,

which has good reduction outside 11. By considering the Frobenius elements π2 =
ρ`,E(Frob2) and π3 = ρ`,E(Frob3), and using your criterion above, show that ρE,` is
surjective for all ` ≥ 13 satisfying

(
11
`

)
= −1.

6There is also an effective procedure to determine a finite set of ` that need to be checked.
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Problem 5. The Gross-Zagier formula for singular moduli (98 points)

The j-invariants of elliptic curves E/C with complex multiplication are sometimes called
singular moduli, since such j-invariants are quite special. As we now know, singular
moduli are the roots of Hilbert class polynomials HD(X). A famous result of Gross and
Zagier [5] gives a remarkable formula7 for the prime factorization of the norm of the
difference of two singular moduli arising as roots of two distinct distinct Hilbert class
polynomials.

Let D1 and D2 be two relatively prime fundamental discriminants. To simplify
matters, let us assume that D1, D2 < −4. Define

J(D1, D2) =

h1∏
i=1

h2∏
k=1

(
j1,i − j2,k

)
,

where h1 = h(D1) and h2 = h(D2), and j1,i and j2,k range over the roots of the Hilbert
class polynomials HD1(X) and HD2(X), respectively.

(a) Prove that J(D1, D2) is an integer.

Gross and Zagier discovered an explicit formula for the prime factorization of J(D1, D2).
To state it we first define two auxiliary functions.

Let us call a prime p suitable if
(
D1D2
p

)
6= −1, and call a positive integer n suitable

if all its prime factors are suitable. For all suitable primes p, let

ε(p) =


(
D1
p

)
if p 6 |D1(

D2
p

)
if p 6 |D2.

where
(
D
p

)
denotes the Kronecker symbol.

(b) Prove that ε(p) is well-defined for all suitable primes p.

We extend ε multiplicatively to suitable integers n. For suitable integers m, let

F (m) =
∏

nn′=m

nε(n
′),

where the product is over positive integers n and n′ whose product is m.

Theorem (Gross–Zagier). With notation as above, we have

J(D1, D2)
2 =

∏
x2<D1D2

x2≡D1D2 mod 4

F

(
D1D2 − x2

4

)
.

Note that the product on the RHS is taken over all integers x (positive and negative)
that satisfy the constraints (so each nonzero value of x2 occurs twice).

(c) Prove that for every x in the product of the theorem above, (D1D2 − x2)/4 is a
suitable integer (so the formula is well-defined).

7This is not the Gross–Zagier formula, it is their second most famous formula. The Gross–Zagier for-
mula concerns the heights of Heegner points and is related to the Birch and Swinnerton–Dyer conjecture.

9



It is not immediately obvious that the product on the right is actually an integer;
in general F (m) need not be. But in fact every F (m) appearing in the product is a
(possibly trivial) prime power.

(d) Let m be a positive integer of the form (D1D2−x2)/4. Prove that F (m) = 1 unless
m can be written in the form:

m = p2a+1p2a11 · · · p2arr qb11 · · · q
bs
s ,

where ε(p) = ε(p1) = · · · = ε(pr) = −1 and ε(q1) = · · · = ε(qs) = 1. Prove that in
this case we have

F (m) = p(a+1)(b1+1)···(bs+1),

and thus if p divides F (m) then p is the only prime dividing m with an odd exponent
and ε(p) = −1. (Hint: see exercises 13.15 and 13.16 in [3]).

(e) Prove that every prime p dividing J(D1, D2) satisfies the following:

(i)
(
D1
p

)
6= 1 and

(
D2
p

)
6= 1;

(ii) p divides an integer of the form (D1D2 − x2)/4;

(iii) p ≤ D1D2/4.

(f) Implement an algorithm to compute the prime factorization of |J(D1, D2)|, us-
ing the Gross-Zagier theorem and parts (d) and (e) above. Then use your algo-
rithm to compute the prime factorization of |J(D1, D2)| for three pairs of distinct
discriminants that have class number greater than 4. Note that you can com-
pute the class number of D in Sage by creating the number field Q(

√
D) using

K.<a>=NumberField(x**2-D) and then calling K.class number().

(g) For each of the three pairs of discriminants D1 and D2 you selected in part (f):

(1) Construct a set S of primes pi that split completely in the Hilbert class fields
of both D1 and D2 such that

∏
pi > 106 · |J(D1, D2)|. The norm equation

function in this Sage notebook may be helpful.

(2) For each prime pi ∈ S, compute J(D1, D2) mod pi directly from its definition
by using Sage to find the roots of HD1(X) and HD2(X) modulo pi and com-
puting the product of all the pairwise differences (in Sage, use the function
hilbert class polynomial to compute HD1 , HD2 ∈ Z[X] then use the
method .change ring(GF(p)).roots() to find their roots in Fp.

(3) Use the Chinese remainder theorem to compute J(D1, D2) ∈ Z, as explained in
Problem 2 above (be sure to get the sign right). Verify that your results agree
with your computations in part (f).

Problem 6. Survey (2 points)

Complete the following survey by rating each problem you attempted on a scale of 1 to 10
according to how interesting you found it (1 = “mind-numbing,” 10 = “mind-blowing”),
and how difficult you found it (1 = “trivial,” 10 = “brutal”). Also estimate the amount
of time you spent on each problem to the nearest half hour.
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Interest Difficulty Time Spent

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

Please rate each of the following lectures that you attended, according to the quality of
the material (1=“useless”, 10=“fascinating”), the quality of the presentation (1=“epic
fail”, 10=“perfection”), the pace (1=“way too slow”, 10=“way too fast”, 5=“just right”)
and the novelty of the material (1=“old hat”, 10=“all new”).

Date Lecture Topic Material Presentation Pace Novelty

5/5 Ring class fields, the CM method

5/10 Isogeny volcanoes

Please feel free to record any additional comments you have on the problem sets or
lectures, in particular, ways in which they might be improved.
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