
18.783 Elliptic Curves Spring 2021

Problem Set #10

Description: These problems are related to the material covered in Lectures 17–19.

Instructions: Pick any combination of problems to solve that sums to 100 points. Your
solutions are to be written up in latex and submitted as a pdf-file.

Collaboration is permitted/encouraged, but you must identify your collaborators or
your group, as well any references you consulted that are not listed in the syllabus or
lecture notes. If there are none write “Sources consulted: none” at the top of your
solutions. Note that each student is expected to write their own solutions; it is fine to
discuss the problems with others, but your writing must be your own.

The first person to spot each non-trivial typo/error in the problem sets or lecture
notes will receive 1-5 points of extra credit.

In cases where your solution involves code, please either include your code in your
write up, or (better) the name of a notebook in your 18.783 CoCalc project containing
you code (use a separate notebook for each problem).

Problem 1. Congruence subgroups (98 points)

Let Γ(1) := SL2(Z) denote the modular group and H∗ := {τ : im τ > 0} ∪Q ∪ {∞} the
extended upper half plane. The diagram on the next page depicts a fundamental region
F for H∗/Γ(1) in H∗, along with nine of its translates. Each translate γF is labeled by
γ, where γ is expressed in terms of the generators S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
for Γ(1).

The colored labels ρ, i,∞ within the region labeled by γ indicate the points γρ, γi,
and γ∞, respectively (where ρ = e2πi/3). Note that the red, black, and blue colored
∞ along the top of the diagram are all the same point, but there are three distinct
translates of ∞ on the real axis (at −1, 0, 1), each of which lies in two translates of F
(this illustrates a key point: translates of F may overlap at points whose stabilizers act
non-trivially, namely, the points i, ρ,∞). The region F includes the arc from i to ρ along
the unit circle and the line from ρ to ∞ along the imaginary axis, but no other points
on its boundary other than ∞; translates of these have been colored and oriented.

Remark. The lines/arcs connecting i, ρ,∞ in each translate of F are geodesics, meaning
they are shortest paths between two points, under the hyperbolic metric in which the

length of a continuously differentiable path γ : [a, b]→ H is given by
∫ b
a
|γ′(t)|

Im(γ(t))dt. Such
paths are necessarily either vertical lines or arcs on a semicircle that intersects the real
axis in right angles. For more background on hyperbolic geometry see [2, Ch. 33].

We recall the following subgroups of SL2(Z), defined for each integer N ≥ 1:

Γ(N) := {γ ∈ SL2(Z) : γ ≡ ( 1 0
0 1 ) mod N},

Γ1(N) := {γ ∈ SL2(Z) : γ ≡ ( 1 ∗
0 1 ) mod N},

Γ0(N) := {γ ∈ SL2(Z) : γ ≡ ( ∗ ∗0 ∗ ) mod N},

and corresponding modular curves

X(N) := H∗/Γ(N), X1(N) := H∗/Γ1(N), X0(N) := H∗/Γ0(N).

For any congruence subgroup Γ we call the Γ(1)-translates of ∞ in H∗ or H∗/Γ cusps.
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(a) Determine the index of Γ(2) in Γ(1), and the number of Γ(2) cusp orbits. Then give
a connected fundamental region for H∗/Γ(2) by listing a subset of the translates of
F in the diagram above and identify the cusps that lie in your region. Compute
the genus of X(2) by triangulating your fundamental region and applying Euler’s
formula V − E + F = 2 − 2g. Be careful to count vertices and edges correctly —
initially specify vertices and edges as H∗-points in the diagram (e.g. STρ), then
determine which vertices and edges are Γ(2)-equivalent (note that edges whose end
points are equivalent need not be equivalent). Do the same for Γ0(2) and X0(2).

(b) For each of the following congruence subgroups, determine its index in Γ(1), the
number of cusp orbits, and a set of cusp representatives: Γ0(3), Γ1(3), Γ(3).

(c) Prove that for each integer N ≥ 1 we have an exact sequence

1 −→ Γ(N) −→ SL2(Z) −→ SL2(Z/NZ) −→ 1.

Show that in general one cannot replace SL2 with GL2 in the sequence above (so
your proof for SL2 needs to use more than the fact that Z→ Z/NZ is surjective).

(d) Derive formulas for the index [Γ(1) : Γ] for Γ = Γ(N), Γ1(N),Γ0(N) and any N ≥ 1.
Use the Euler function φ(N) := #(Z/NZ)× where appropriate.

For any congruence subgroup Γ, let ν2(Γ) and ν3(Γ) count the number of SL2(Z)
translates of i and ρ, respectively, that lie in a fundamental region of H∗ for Γ and are
fixed by some γ ∈ Γ other than ±I. Let ν∞(Γ) be the number of cusp-orbits for Γ.

(e) For Γ = Γ(p),Γ1(p),Γ0(p) derive formulas for ν2(Γ), ν3(Γ), ν∞(Γ), where p is a prime
(hint: show that for any δ ∈ SL2(Z), if γ ∈ SL2(Z)− {±I} stabilizes δi then it has
trace 0, and if it stabilizes δρ then it has trace ±1).
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Let Γ(N),Γ1(N),Γ0(N) denote the images of the groups Γ(N),Γ1(N),Γ0(N) in
PSL2(Z) := SL2(Z)/{±I} respectively, and for any congruence subgroup Γ with im-
age Γ in PSL2(Z) define

µ(Γ) := [Γ(1) : Γ] =

{
[Γ(1) : Γ] if − I ∈ Γ

[Γ(1) : Γ]/2 if − I 6∈ Γ

Using the Riemann-Hurwitz genus formula one can prove that for any congruence sub-
group Γ the genus of the modular curve XΓ := H∗/Γ is given by the formula

g(XΓ) = 1 +
µ(Γ)

12
− ν2(Γ)

4
− ν3(Γ)

3
− ν∞(Γ)

2
.

For convenience we may write g(Γ) for g(XΓ).

(f) Use your answers to (d) and (e) to give asymptotic approximations for g(Γ) for
Γ = Γ(p),Γ1(p),Γ0(p) and increasing primes p that have an exact leading term (so
of the form f(p) + O(g(p)) for some functions f and g with g = o(f)). Conclude
that the set of primes p for which g(Γ) takes any fixed value is finite.

Modular curves of genus 0 and 1 are of particular interest because we can use these
curves to obtain infinite families of elliptic curves over Q (or a number field) that have
particular properties, for example, a torsion point of order p. By Faltings’ Theorem,
over a number field a curve of genus g ≥ 2 has only a finite number of rational points.

(g) For Γ = Γ(p),Γ1(p),Γ0(p) determine the primes p for which g(Γ) = 0, and the
primes p for which g(Γ) = 1.

You may use Sage to check your answers (and gain intuition), but your proofs must
stand on their own. To create the congruence subgroups Γ(N),Γ1(N),Γ0(N) in Sage
use Gamma(N), Gamma1(N), Gamma0(N), respectively. The returned objects support
index(), nu2(), nu3(), cusps(), and genus() methods that you may find useful.

Problem 2. Non-congruence subgroups of finite index (98 points)

Recall that a congruence subgroup is a subgroup of Γ(1) = SL2(Z) that contains Γ(N)
for some N ≥ 1. Every congruence subgroup is a finite index subgroup of SL2(Z). In
this problem you will prove that the converse does not hold; there exist finite index
subgroups of SL2(Z) that are not congruence subgroups.

Let PSL2(Z) := SL2(Z)/{±I}, let α be the image of S =
(

0 −1
1 0

)
in PSL2(Z), and

let β be the image of ST =
(

0 −1
1 1

)
in PSL2(Z).

(a) Let Z2,3 be the finitely presented group with generators x, y satisfying the relations
x2 = y3 = 1 (and no others). Prove that the map Z2,3 → PSL2(Z) defined by x 7→ α
and y 7→ β is an isomorphism. You may find the diagram from Problem 1 helpful.

Part (a) implies that for any finite group H = 〈a, b〉 with |a| = 2 and |b| = 3 we have
a surjective group homomorphism

SL2(Z) � PSL2(Z) � H,
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where the first map is quotient map SL2(Z)→ PSL2(Z) and the second is the composition
of the isomorphism PSL2(Z)

∼−→ Z2,3 and the surjective homomorphism Z2,3 → H
defined by x 7→ a, y 7→ b. The kernel ΓH of such a homomorphism is a finite index
subgroup of SL2(Z). Our strategy is to show that for many finite groups H = 〈a, b〉,
this kernel cannot contain Γ(N) for any integer N , and is therefore not a congruence
subgroup. To simplify matters, we will focus on cases where H is a simple group, meaning
that H is a non-trivial group that contains no normal subgroups other than the trivial
group and itself. Every non-trivial finite group G has a composition series

1 = G0 / G1 / · · · / Gk−1 / Gk = G

in which each Gi is a normal subgroup of Gi+1 and each quotient Gi+1/Gi is simple.
The quotients Gi+1/Gi are called the simple factors of G (analogous to prime factors of
an integer). This composition series is not unique, but the Jordan-Hölder theorem states
that the simple factors Gi+1/Gi that appear in any composition series for G are unique
up to isomorphism (and occur with the same multiplicity).

(b) Prove that if a finite simple group S is a quotient of G (meaning S = G/K for some
K /G) then S is a simple factor of G but that the converse does not hold in general.

(c) Prove that if a finite group G is the direct product of non-trivial groups H1, . . . ,Hn

then the factors of G are precisely the factors of the Hi (counted with multiplicity).
Conclude that if S is a simple quotient of G then it is a quotient of one of the Hi.

(d) Prove part (c) of Problem 1.

(e) Let N = pe11 · · · perr > 1 by with p1, . . . , pr distinct primes. Prove that every simple
quotient of SL2(Z/NZ) is a simple quotient of SL2(Z/peii Z) for some i.

(f) Using the fact that PSL2(Z/pZ) is a non-abelian simple group for primes p ≥ 5, show
that the simple factors of SL2(Z/peZ) are: a cyclic group of order 2, PSL2(Z/pZ),
and 3e−3 cyclic groups of order p, and that in particular, PSL2(Z/pZ) is the unique
non-abelian simple factor of SL2(Z/peZ), for all primes p ≥ 5.

(g) Using the fact that the alternating group An is a non-abelian simple group for all
n ≥ 5, prove that An is not a quotient of SL2(Z/NZ) for any N and any n > 5.

(h) Using Sage, find elements a of order 2 and b of order 3 that generate A9 and list
them in cycle notation. You don’t need to write down a proof that they generate A9

but you should verify this in Sage. To create A9 use A9=AlternatingGroup(9),
and to check whether a and b generate A9 use A9.subgroup([a,b]) == A9.

In fact, An is generated by an element of order 2 and an element of order 3 for all n ≥ 9
(see [1]), but you are not asked to prove this. It follows from the discussion after (a)
that there is a surjective homomorphism SL2(Z) � A9 that sends ±α to a and ±β to b.
The kernel Γ of this homomorphism is a finite index subgroup of SL2(Z).

(i) Prove that Γ is not a congruence subgroup.

We now want to construct a short list of generators for Γ. The first step is to convert the
representation of A9 with generators a and b of orders 2 and 3 into a finitely presented
group that is a finite quotient of Z2,3 specified by relations. To do this use the Sage
command:
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H=A9.subgroup([a,b]).as_finitely_presented_group().simplified()

This may take a few seconds. The second step is to plug S and ST into all the relations
in the finite presentation of H you created above. Important: Sage may swap the roles
of a and b when it constructs the finite presentation – check the relations to see if this
happened (if you see a3 and b2 in the list of relations rather than a2 and b3 then you
know they were swapped). Assuming a2 and b3 are the first two relations, you can use

G=SL(2,Integers()); S=G([0,-1,1,0]); T=G([1,1,0,1])
for i in range(2,len(H.relations())):

print(H.relations()[i].subs(a=S,b=S*T))

to get a list of matrices in SL2(Z) that, together with S and T generate Γ. Note that
the length of the list you get will depend on your choice of a and b, but shouldn’t be
more than 10 or 20 matrices (in fact one can do it with 4).

(j) Record the number of matrices in your list above (not including S and T ), and a
smallest and largest matrix in your list according to the L∞-norm (maximum of
absolute values of matrix entries).

Problem 3. Polycyclic presentations (98 points)

Let ~α = (α1, . . . , αk) be a sequence of generators for a finite abelian group G, and let
Gi = 〈α1, . . . , αi〉 be the subgroup generated by α1, . . . , αi. The subnormal series

1 = G0 / G1 / · · · / Gk−1 / Gk = G,

is a polycyclic series: each Gi−1 is a normal subgroup of Gi and each of the quotients
Gi/Gi−1 = 〈αiGi−1〉 is a cyclic group (which we don’t require to have prime order,
but one can always further decompose the series so that they are). Every finite solvable
group admits a polycyclic series, but we restrict ourselves here to abelian groups (written
multiplicatively).

When G is the internal direct product of the cyclic groups 〈αi〉, we have Gi/Gi−1
∼=

〈αi〉 and call ~α a basis for G, but this is a special case. For abelian groups, Gi/Gi−1

is isomorphic to a subgroup of 〈αi〉, but it may be a proper subgroup, even when G is
cyclic.

The sequence r(~α) = (r1, . . . , rk) of relative orders for ~α is defined by

ri = |Gi : Gi−1|,

and satisfies ri = min{r : αri ∈ Gi−1}. We necessarily have ri ≤ |αi|, but equality
typically does not hold (~α is a basis precisely when ri = |αi| for all i). In any case, we
always have

∏
i ri = |G|, thus computing the ri determines the order of G.

(a) Let ~α = (α1, . . . , αk) be a sequence of generators for a finite abelian group G,
with relative orders r(~α) = (r1, . . . , rk). Prove that every β ∈ G can be uniquely
represented in the form

β = ~x · ~α = αx11 · · ·α
xk
k ,

where each xi ∈ Z satisfies 0 ≤ xi < ri. Show that if β = αrii , then xj = 0 for j ≥ i.
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By analogy with the case r = 1, we call ~x the discrete logarithm of β with respect to ~α
(but note that the discrete logarithm of the identity element is now the zero vector).
The vector ~x can be conveniently encoded as an integer x in the interval [0, |G| − 1] via

x =
∑

1≤i≤k
xiNi, Ni =

∏
1≤j<i

rj ,

and we may simply write x = log~α β to indicate that x is the integer encoding the vector
~x = log~α β. Note that xi = bx/Nic mod ri, so it is easy to recover ~x from its encoding x.

(b) Design a generic group algorithm that given generators ~α = (α1, . . . , αk) for a finite
abelian group G, constructs a table T with entries T [0], ..., T [|G| − 1] with the
property that if T [n] = β, then n = log~α β. Your algorithm should also output
the relative orders ri, and the integers si for which T [si] = αrii .

This allows us to compute a polycyclic presentation for G, which consists of the
sequence ~α, the relative orders r(~α) = (r1, . . . , rk), and the vector of integers s(~α) =
(s1, . . . , sk). With this presentation in hand, we can effectively simulate any computation
in G without actually performing any group operations (i.e. calls to the black box). This
can be very useful when the group operation is expensive.

(c) Let ~α, r(~α), and s(~α) be a polycyclic presentation for a finite abelian group G. Given
integers x = log~α β and y = log~α γ, explain how to compute the integer z = log~α βγ
using r(~α) and s(~α), without performing any group operations. Also explain how
to compute the integer w = log~α β

−1.

As a side benefit, the algorithm you designed in part (b) gives a more efficient way to
enumerate the class group cl(D) than we used in Problem Set 9, since the class number
h(D) is asymptotically on the order of

√
|D| (this is a theorem of Siegel).

But first we need to figure out how to construct a set of generators for G. We
will do this using prime forms. These are forms f = (a, b, c) for which a is prime and
−a < b ≤ a (but we do not require a ≤ c, so prime forms need not be reduced). Prime
forms correspond to prime ideals whose norm is prime (degree-1 primes). Recall that
imaginary quadratic orders O are determined by their discriminant D, which can always
be written in the form D = u2DK , where DK is the discriminant of the maximal order
OK and u = [OK : O] is the conductor of O.

(d) Let a be a prime. Prove that if a divides the conductor then there are no prime
forms of norm a, and that otherwise there are exactly 1 + (Da ) prime forms of norm
a, where (Da ) is the Kronecker symbol.1 Write a program that, given a prime a,
either outputs a prime form (a, b, c) with b ≥ 0 or determines that none exist.

When D is fundamental, we can generate cl(D) using prime forms of norm at most√
|D|/3; this follows from the bound proved in Problem Set 9 and the fact that the

maximal order OK is a Dedekind domain (so ideals can be uniquely factored into prime
ideals). We can still generate cl(D) with prime forms when D is non-fundamental, but
bounding the primes involved is slightly more complicated, so we will restrict ourselves
to fundamental discriminants for now.

1Thus (D
2
) is 0 if D is even, 1 if D ≡ 1 mod 8, and −1 if D ≡ 5 mod 8. Note that we refer to a as the

”norm” of the form (a, b, c), since the corresponding ideal has norm a.
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(e) Implement the algorithm you designed in part (b), using the program from part (d)
to enumerate the prime forms of norm a ≤

√
|D|/3 in increasing order by a. Use

the prime forms as generators, but use a table lookup to discard prime forms that
are already present in your table so that your αi all have relative orders ri > 1
(warning: prime forms need not be reduced: be sure to reduce them before making
any comparisons). For the group operation, you can create binary quadratic forms in
Sage using BinaryQF([a,b,c]), and then compose forms f and g using h=f*g.
Use h.reduced form() to get the reduced form. You will only be using this code
on small examples, so don’t worry about the efficiency of your implementation.

(f) Run your algorithm on D = −5291, and then run it on the first fundamental dis-
criminant D < −N , where N is the first five digits of your student ID. Don’t
list all the elements of cl(D), just give the reduced forms for the elements of ~α
and the integer vectors r(~α) and s(~α). Sanity check your results by verifying that
you at least get the right class number for D (you can check this in Sage using
NumberField(x**2-D,’t’).class number()).

(g) Recall that every finite abelian group is isomorphic to a unique product of non-
trivial cyclic groups Z/n1Z × Z/n2Z × · · · × Z/nrZ for which n1|n2| · · · |nr. The
sequence of integers (n1, . . . , nr) are the invariant factors of G and uniquely identify
its isomorphism class. Design an algorithm that takes a polycyclic presentation for
a finite abelian group G as input and outputs its invariant factors along with a
corresponding basis α1, . . . , αr for G with |αi| = ni.

(h) Use your algorithm from part (g) to compute the invariant factors of the two class
groups you computed in part (f), along with corresponding generators. Express
each generator as a reduced form and give its discrete logarithm with respect to the
generators for the polycyclic presentations you computed in part (f).

Problem 4. Survey (2 points)

Complete the following survey by rating each of the problems you attempted on a scale
of 1 to 10 according to how interesting you found the problem (1 = “mind-numbing,” 10
= “mind-blowing”), and how difficult you found it (1 = “trivial,” 10 = “brutal”). Also
estimate the amount of time you spent on each problem to the nearest half hour.

Interest Difficulty Time Spent

Problem 1

Problem 2

Problem 3

Also, please rate each of the following lectures that you attended, according to the quality
of the material (1=“useless”, 10=“fascinating”), the quality of the presentation (1=“epic
fail”, 10=“perfection”), the pace (1=“way too slow”, 10=“way too fast”, 5=“just right”)
and the novelty of the material (1=“old hat”, 10=“all new”).

Date Lecture Topic Material Presentation Pace Novelty

4/28 The modular equation

5/3 The Hilbert class polynomial

Please feel free to record any additional comments you have on the problem sets or
lectures, in particular, ways in which they might be improved.

7



References

[1] I.M.S. Dey and J. Wiegold, Generators for alternating and symmetric groups, J.
Australian Mathematical Society 12 (1971), 63–68.

[2] J. Voight, Quaternion algebras, Springer, 2021.

8

https://doi.org/10.1017/S1446788700008302
https://math.dartmouth.edu/~jvoight/quat-book.pdf


  
 

 
  

            

 
 

 
  

         

MIT OpenCourseWare 
https://ocw.mit.edu 

18.783 / 18.7831 Elliptic Curves 
Spring 2021 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 

https://ocw.mit.edu
https://ocw.mit.edu/terms



