18.783 Elliptic Curves Lecture 12

Andrew Sutherland

March 31, 2021

The endomorphism ring of an elliptic curve E

Recall that the endomorphism ring $\operatorname{End}(E)$ is the ring of morphisms $E \rightarrow E$ in which addition is defined pointwise and we multiply via composition.

- $\operatorname{End}(E)$ has no zero divisors;
- deg: $\operatorname{End}(E) \rightarrow \mathbb{Z}_{\geq 0}$ defined by $\alpha \mapsto \operatorname{deg} \alpha$ is multiplicative (with $\operatorname{deg} 0:=0$);
- $\operatorname{deg} n=n^{2}$ for all $n \in \mathbb{Z} \subseteq \operatorname{End}(E)$;
- $\hat{\alpha} \in \operatorname{End}(E)$ with $\alpha \hat{\alpha}=\hat{\alpha} \alpha=\operatorname{deg} \alpha=\operatorname{deg} \hat{\alpha}$, and $\hat{\hat{\alpha}}=\alpha$;
- $\hat{n}=n$ for all $n \in \mathbb{Z} \subseteq \operatorname{End}(E)$;
- $\widehat{\alpha+\beta}=\hat{\alpha}+\hat{\beta}$ and $\widehat{\alpha \beta}=\hat{\beta} \hat{\alpha}$ for all $\alpha, \beta \in \operatorname{End}(E)$;
- $\operatorname{tr} \alpha:=\alpha+\hat{\alpha}$ satisfies $\operatorname{tr} \alpha=\operatorname{tr} \hat{\alpha}$ and $\operatorname{tr}(\alpha+\beta)=\operatorname{tr} \alpha+\operatorname{tr} \beta$;
- $\operatorname{tr} \alpha=\operatorname{deg} \alpha+1-\operatorname{deg}(\alpha-1) \in \mathbb{Z}$ for all $\alpha \in \operatorname{End}(E)$;
- α and $\hat{\alpha}$ are the roots of the characteristic equation $x^{2}-(\operatorname{tr} \alpha) x+\operatorname{deg} \alpha \in \mathbb{Z}[x]$.

Tensor products of algebras

Definition

For a commutative ring R an (associative unital) R-algebra A is a ring equipped with a homomorphism $R \rightarrow A$ whose image lies in the center. Every ring is a \mathbb{Z}-algebra.

Definition

The tensor product of two R-algebras A and B is the R-algebra $A \otimes_{R} B$ generated by the formal symbols $\alpha \otimes \beta$ with $\alpha \in A, \beta \in B$, subject to the relations

$$
\begin{gathered}
\left(\alpha_{1}+\alpha_{2}\right) \otimes \beta=\alpha_{1} \otimes \beta+\alpha_{2} \otimes \beta, \quad \alpha \otimes\left(\beta_{1}+\beta_{2}\right)=\alpha \otimes \beta_{1}+\alpha \otimes \beta_{2} \\
r \alpha \otimes \beta=\alpha \otimes r \beta=r(\alpha \otimes \beta), \quad\left(\alpha_{1} \otimes \beta_{1}\right)\left(\alpha_{2} \otimes \beta_{2}\right)=\alpha_{1} \alpha_{2} \otimes \beta_{1} \beta_{2}
\end{gathered}
$$

It comes with an R-linear map $\varphi: A \times B \rightarrow A \otimes_{R} B$ defined by $(\alpha, \beta) \mapsto \alpha \otimes \beta$ with the universal property that every R-bilinear map of R-algebras $\psi: A \times B \rightarrow C$ factors uniquely through $A \otimes_{R} B$: there is a unique $\psi^{\prime}: A \otimes_{R} B \rightarrow C$ such that $\psi=\psi^{\prime} \circ \varphi$.

Base change

Definition

If $R \rightarrow S$ is a homomorphism of commutative rings, then S as an R-algebra. If A is an R-algebra, the S-algebra $S \rightarrow A \otimes_{R} S$ is the base change of A to S. (the map $S \rightarrow A \otimes_{R} S$ is defined by $s \mapsto 1 \otimes s$).

Lemma

If R is an integral domain with fraction field S then every element of $A \otimes_{R} S$ can be written as a pure tensor $\alpha \otimes s$.

Example

The ring of integers \mathcal{O}_{K} of a number field K / \mathbb{Q} is a \mathbb{Z}-algebra of rank $n:=[K: \mathbb{Q}]$. The base change $\mathcal{O}_{K} \otimes_{\mathbb{Z}} \mathbb{Q}$ is a \mathbb{Q}-algebra of dimension n isomorphic to K.

The endomorphism algebra of an elliptic curve

Definition

The endomorphism algebra of an elliptic curve E is the \mathbb{Q}-algebra

$$
\operatorname{End}^{0}(E):=\operatorname{End}(E) \otimes_{\mathbb{Z}} \mathbb{Q}
$$

Its elements can all be written in the form $r \alpha$ with $r \in \mathbb{Q}$ and $\alpha \in \operatorname{End}(E)$. We extend the map $\alpha \rightarrow \hat{\alpha}$ to $\operatorname{End}^{0}(\mathbb{Q})$ by defining $\widehat{r \alpha}=r \hat{\alpha}$. We then have $\hat{\hat{\alpha}}=\alpha, \widehat{\alpha \beta}=\hat{\beta} \hat{\alpha}$ and $\widehat{\alpha+\beta}=\hat{\alpha}+\hat{\beta}$ for $\alpha, \beta \in \operatorname{End}^{0}(E)$, and $\hat{r}=r$ for $r \in \mathbb{Q}$.

Definition

An anti-homomorphism $\varphi: R \rightarrow S$ of rings is a homomorphism of additive groups with $\varphi\left(1_{R}\right)=1_{S}$ and $\varphi(\alpha \beta)=\varphi(\beta) \varphi(\alpha)$ for all $\alpha, \beta \in R$. An involution (or anti-involution) is an anti-homomorphism $\varphi: R \rightarrow R$ that is its own inverse: $\varphi \circ \varphi$ is the identity map.

The involution $\alpha \mapsto \hat{\alpha}$ of $\operatorname{End}(E)$ is called the Rosati involution.

Norm and trace

Definition

For $\alpha \in \operatorname{End}^{0}(E)$, we define the (reduced) norm $\mathrm{N} \alpha:=\alpha \hat{\alpha}$ and trace $\mathrm{T} \alpha:=\alpha+\hat{\alpha}$. We have $\mathrm{N} \hat{\alpha}=\mathrm{N} \alpha, \mathrm{T} \hat{\alpha}=\mathrm{T} \alpha, \mathrm{N}(\alpha \beta)=\mathrm{N} \alpha \mathrm{N} \beta, \mathrm{T}(\alpha+\beta)=\mathrm{T} \alpha+\mathrm{T} \beta, \mathrm{T}(r \alpha)=r \mathrm{~T} \alpha$, and we note that $\mathrm{T} \alpha=\alpha+\hat{\alpha}=1+\alpha \hat{\alpha}-(1-\alpha)(1-\hat{\alpha})=1+\mathrm{N} \alpha-\mathrm{N}(1-\alpha) \in \mathbb{Q}$.

Lemma

For all $\alpha \in \operatorname{End}^{0}(E)$ we have $\mathrm{N} \alpha \in \mathbb{Q} \geq 0$ with $\mathrm{N} \alpha=0$ if and only if $\alpha=0$.
Proof: If $\alpha=r \phi$ then $\mathrm{N} \alpha=\alpha \hat{\alpha}=r \phi r \hat{\phi}=r^{2} \operatorname{deg} \phi \geq 0$ with equality only if $r \phi=0$.

Corollary

Every nonzero $\alpha \in \operatorname{End}^{0}(E)$ has a multiplicative inverse α^{-1}.
Proof: If $\beta=\hat{\alpha} / \mathrm{N} \alpha$, then $\alpha \beta=\mathrm{N} \alpha / \mathrm{N} \alpha=1$ and $\beta \alpha=\mathrm{N} \hat{\alpha} / N \alpha=1$, so $\beta=\alpha^{-1}$.

Lemma

An element $\alpha \in \operatorname{End}^{0}(E)$ is fixed by the Rosati involution if and only if $\alpha \in \mathbb{Q}$.
Proof: If $\hat{\alpha}=\alpha$ then $\mathrm{T} \alpha=\alpha+\hat{\alpha}=2 \alpha$ and $\alpha=\mathrm{T} \alpha / 2 \in \mathbb{Q}$.

Lemma

Let $\alpha \in \operatorname{End}^{0}(E)$. Then α and $\hat{\alpha}$ are roots of the polynomial

$$
x^{2}-(\mathrm{T} \alpha) x+\mathrm{N} \alpha \in \mathbb{Q}[x]
$$

Proof: $\left.0=(\alpha-\alpha)(\hat{\alpha}-\hat{\alpha})=\alpha^{2}-\alpha(\alpha+\hat{\alpha})+\alpha \hat{\alpha}\right)=\alpha^{2}-(\mathrm{T} \alpha) \alpha+\mathrm{N} \alpha$.

Corollary

For any nonzero $\alpha \in \operatorname{End}^{0}(E)$, if $\mathrm{T} \alpha=0$ then $\alpha^{2}=-\mathrm{N} \alpha<0$ and $\alpha \notin \mathbb{Q}$.

Quaternion algebras

Definition

A quaternion algebra H over a field k is a k-algebra with a basis $\{1, \alpha, \beta, \alpha \beta\}$ satisfying $\alpha^{2}, \beta^{2} \in k^{\times}$and $\alpha \beta=-\beta \alpha$. We distinguish quaternion algebras as non-split or split depending on whether they are division rings or not.

Example

Non-split: the \mathbb{R}-algebra with basis $\{1, i, j, i j\}$ satisfying $i^{2}=j^{2}=-1$ and $i j=-i j$.
Split: the ring of 2×2 matrices over k with $\alpha^{2}=\beta^{2}=1$, where

$$
\left.\left.\left.\left.\alpha:=\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad \beta:=\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \alpha \beta=\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad \beta \alpha=\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) .
$$

Endomorphism algebra classification theorem

Theorem

Let E / k be an elliptic curve. Then $\operatorname{End}^{0}(E)$ is isomorphic to one of the following:

- the field of rational numbers \mathbb{Q};
- an imaginary quadratic field $\mathbb{Q}(\alpha)$ with $\alpha^{2}<0$;
- a quaternion algebra $\mathbb{Q}(\alpha, \beta)$ with $\alpha^{2}, \beta^{2}<0$.

Corollary

The endomorphism ring $\operatorname{End}(E)$ is a free \mathbb{Z}-module of rank $r:=\operatorname{dim}_{\mathbb{Q}} \operatorname{End}^{0}(E)$. In other words, it is an order in $\operatorname{End}^{0}(E)$.

Definition

An elliptic curve with $\operatorname{End}(E) \neq \mathbb{Z}$ is said to have complex multiplication.

MIT OpenCourseWare
https://ocw.mit.edu

18.783 / 18.7831 Elliptic Curves

Spring 2021

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

