
18.783 Elliptic Curves Spring 2021

Problem Set #1

Description: These problems are related to material covered in Lectures 1–3. Some
require the use of Sage; you will need to either create a (free) CoCalc account, or you
can download and install a copy of Sage to run on your own computer (warning, it is
big and takes time to setup, using CoCalc avoids this but won’t work offline). Sage is
based on the python programming language; you will find examples of Sage usage in the
problems below, and there is a wealth of information to be found on the Sage website,
including tutorials.

Instructions: Solve any combination of problems 1-5 that sums to 96 points, then
complete the survey problem 6 (worth 4 points), whose results will help shape future
problem sets and lectures. You can use the latex source for this problem set as a template
for writing up your solutions. CoCalc includes an online latex editor, but feel free to use
the latex environment of your choice (I currently use Overleaf and Texmaker, but there
are many other options). Be sure to put your name on your solution (you can replace
the due date in the header with your name). Your solutions should be written up in
latex (please do not submit handwritten solutions) and submitted as a pdf-file.

Collaboration is permitted/encouraged, but you must identify your collaborators or
your group, as well any references you consulted that are not listed in the syllabus or
lecture notes. If there are none write “Sources consulted: none” at the top of your
solutions. Note that each student is expected to write their own solutions; it is fine to
discuss the problems with others, but your writing must be your own.

The first person to report each non-trivial typo/error in any of the problem sets or
lecture notes will receive 1-5 points of extra credit (depending on the severity).

Problem 1. Chebyshev’s theorem (16 points)

Let π(x) denote the prime counting function, which for any real number x counts the
number of primes p ≤ x. The Prime Number Theorem is the asymptotic statement

π(x) ∼ x

log x

which means limx→∞ π(x)/(x/ log x) = 1. We won’t neeed to prove the prime number
theorem in this course because we are happy to make do with the weaker statement that
there are explicit constants c2 > 1 > c1 > 0 for which

c1
x

log x
≤ π(x) ≤ c2

x

log x
(1)

holds for all sufficiently large x, as proved by Chebyshev. In fact, if we take c1 = (log 2)/2
and c2 = 6 log 2 then (1) holds for all x ≥ 2, as you will now prove.

(a) Show that for all integers n ≥ 1 we have

nπ(2n)−π(n) ≤
∏

n<p≤2n
p ≤

(
2n

n

)
≤ 22n,

where p ranges over primes. Conclude that π(2n)− π(n) ≤ (2 log 2)n/(log n).1

1When you are asked to “conclude” something on a problem set in this course, you need to prove it.
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(b) Using (a), prove that π(2n) ≤ 3 · 2n/n for all integers n ≥ 1, and use this to show

π(x) ≤ (6 log 2)
x

log x

for all x ≥ 1.

(c) For integers n ≥ 1, let vp(n) denote the largest integer e ≥ 0 such that pe|n. Prove

vp(n!) =
∑
e≥1

⌊
n

pe

⌋
,

and then show that vp(
(
2n
n

)
) ≤ (log 2n)/(log p). Using this, prove that

22n

2n
≤ (2n)π(2n)

holds for all integers n ≥ 1.

(d) Using (c), show that for x ≥ 2 we have

π(x) ≥ log 2

2

x

log x
.

Problem 2. Montgomery arithmetic (16 points)

Let p be a prime. For any integers a, b with b > 0, let a rem b denote the unique integer
in [0, b− 1] that is congruent to a modulo b, and let a div b denote the unique integer for
which a = (a div b)b + a rem b; in other words, a div b and a rem b are the quotient and
remainder in the Euclidean division of a by b.

For this problem we will assume we have a machine that performs integer arithmetic
modulo 2w for some fixed word-size w we shall assume is a power of 2 (typically w = 64
or w = 128) and that p < 2w. For cryptographic applications one will have p > 2w, but
the algorithms we consider here can be readily extended to multi-word operands.

For integers a, b ∈ [0, 2w−1] let M denote the cost of computing abdiv 2w or ab rem 2w,
and for a, b ∈ [0, 22w−1], let A denote the cost of computing (a+b) rem 2w, (a−b) rem 2w,
or a rem 2n for any 0 ≤ n ≤ w. We assign a cost of A + M to compute (ab + c) div 2w

with c ∈ [0, 22w − 1].
For the purposes of this problem we will ignore the cost of operations that do not

involve integer arithmetic; you can assume that setting an integer to 0 or 1, comparing
integers, and testing a boolean condition all have zero cost.

In practice the cost of A is typically one clock cycle, the cost of M is typically three
clock cycles; you can lookup the exact count for your favorite CPU here. We will assume
that our computer does not directly support Euclidean division except by powers of 2.
Modern computers do provide instructions for Euclidean division, but their cost is quite
high, typically 30 clock cycles or more for a 64-bit operands. The goal of this problem is
to show that we can perform ring operations in Z/pZ without Euclidean division by p.

(a) Give an algorithm to compute −1/p rem 2w with cost 2(lgw)M + (lgw + 1)A and
an algorithm to compute 2e rem p with cost 2eA.
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Define q := −1/p rem 2w, R := 2w rem p,R2 := 22w rem p. Henceforth we shall assume
these quantities have been precomputed via (a). The cost of this precomputation is not
worth doing if you only want to perform one or two operations in Z/pZ, in which case
you may as well use the Euclidean division modulo p provided by your CPU, but it is
negligible for algorithms that perform many operations in Z/pZ.

(b) Let R−1 be the unique integer in [0, p− 1] for which RR−1 ≡ 1 mod p, and define

redc(x) := xR−1 rem p,

so that redc(x)R ≡ x mod p. Show that given q, for any x ∈ [0, p2w − 1] we can
compute redc(x) as

redc(x) = (((((x rem 2w)q) rem 2w)p+ x) div 2w) rem p,

for a cost of 2M + 3A.

Note that in your solution to 2b you cannot use an operation of the form a rem p, you
are only allowed to use operations supported by our machine, and you need to prove
that your solution works (you will need to use the assumption x < p2w, for example).

I recommend implementing your “algorithm” in Sage (it will be just a few lines) to
make sure you understand what is going on. The python syntax for a rem b is “a%b”,
and the syntax for adiv b is “a//b” — note the double-slash, which tells python to do
a Euclidean division, if you just type “a/b” you will get the rational number a/b.

Now let S be the set of integers in [0, p−1] representing the ring Z/pZ with addition
and multiplication defined by (a+b) rem p and ab rem p, respectively; for a ∈ Z the integer
a rem p is the standard representation of a modulo p. Now let us define [a] := a2w rem p
as the Montgomery representation2 of a modulo p.

(c) Show that the map a 7→ [a] is injective with inverse [a] 7→ redc([a]). This allows us
to view the set T := {[a] : a ∈ S} ⊆ [0, 2w − 1] as an alternative representation of
the ring Z/pZ with addition and multiplication defined by [a]⊕ [b] := [(a+b) rem p]
and [a]⊗ [b] := [ab rem p] (here ⊕ and ⊗ denote addition and multiplication in T ).

Show that [0] = 0, [1] = R, and explain how to compute in the ring T for a
cost of 2A per addition and 3M + 3A per multiplication, assuming q has been
precomputed (in practice the cost of multiplication is closer to 3M + A; some
bit-shifting operations we are charging for actually have zero cost).

(d) The map [a] 7→ redc([a]) = a allows us to recover a from its Montgomery repre-
sentation [a], but this still leaves the question of how to compute [a] := a2w rem p.
Give an algorithm that computes [a] given a and R2 for a cost of 3M + 3A.

Problem 3. Twists of elliptic curves (32 points)

Let E/k be an elliptic curve in short Weierstrass form

E : y2 = x3 +Ax+B.

The quadratic twist of E by c ∈ k× is the elliptic curve over k defined by the equation

Ec : cy2 = x3 +Ax+B.
2Named after Peter L. Montgomery, also known for the Montgomery ladder we will see later.
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(a) Using a linear change of variables, show that Ec is isomorphic to an elliptic curve
in standard Weierstrass form y2 = x3 +A′x+B′, and express A′ and B′ in terms
of A and B and c. Verify that Ec is not singular.

(b) For any group G and positive integer n, we use G[n] to denote the n-torsion
subgroup of G, consisting of all elements whose order divides n. Prove that
E(k)[2] = Ec(k)[2].

(c) Prove that if c is a square in k×, then E and Ec are isomorphic over k (via a linear
change of variables with coefficients in k). Conclude that E and Ec are always
isomorphic over k(

√
c), whether c is a square in k× or not (in general, curves

defined over k are twists if they are isomorphic over some extension of k).

(d) Show that when B = 0, replacing A by A′ := cA for some nonsquare c yields an
elliptic curve E′ that is not a quadratic twist of E but is a quartic twist of E,
which becomes isomorphic to E over the extension k(c1/4). Similarly show how to
construct cubic twists and sextic twists of E when A = 0.

(e) Now let k = Fq be a finite field of odd characteristic, and let t be the unique integer
for which

#E(Fq) = q + 1− t,

where #E(Fq) is the cardinality of the group of Fq-rational points of E. Prove
that

#Ec(Fq) = q + 1− χ(c)t,

where χ : F×q → {±1} is the quadratic character of F×q (so χ(c) = 1 iff c is a square).

(f) Continuing with k = Fq, show that if t 6= 0 then Ec and Ec′ are isomorphic if and
only if χ(c) = χ(c′) (this is also true when t = 0 but you need not prove this).

Problem 4. Four torsion subgroups (32 points)

Let E/k be an elliptic curve in short Weierstrass form

E : y2 = f(x) = x3 +Ax+B,

and let f ′(x) := 3x2 + A denote the formal derivative of f(x). Let E[n] := E(k̄)[n]
denote the n-torsion subgroup of E(k̄). The goal of this problem is to gain a better
understanding of the 2-torsion and 4-torsion subgroups of E.

You may want to solve (or at least read) Problem 3 before attempting this problem,
particularly (3b).

(a) Prove that P ∈ E(k̄) has order 2 if and only if P = (x0, 0) with f(x0) = 0.
Conclude that E[2] ' Z/2Z⊕ Z/2Z and E[2r] ' Z/2rZ⊕ Z/2rZ for all r ≥ 1.

(b) Let Q = (x0, 0) ∈ E(k̄) and let P = (u, v) ∈ E(k̄). Prove that 2P = Q if and only
if we have f ′(x0) = (u− x0)2.

Now let k = Fq be a finite field of odd characteristic and let χ : F×q → {±1} be its
quadratic character.
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(c) Prove that E(Fq) contains a point of order 4 only if χ(f ′(x0)) = 1 for some rational
root x0 ∈ Fq of f(x). Show that this necessary condition is not always sufficient.

(d) Suppose that f(x) has three rational roots x1, x2, x3 ∈ Fq. Prove that

χ(−1)χ(f ′(x1))χ(f ′(x2))χ(f ′(x3)) = 1.

Conclude that if q ≡ 3 mod 4 then E(Fq)[4] 6= E[4].

Let c ∈ F×q be a nonsquare and let Ec denote the quadratic twist of E, as in Problem 3.
If f(x) has no rational roots then E(Fq)[4] = Ec(Fq)[4] = {0} (by 3b and 4a).

(e) Determine up to isomorphism the unordered pairs (E(Fq)[4], Ec(Fq)[4]) that can
arise when f(x) has exactly one rational root, where q and f(x) are allowed to
vary subject to this constraint.

(f) Determine up to isomorphism the unordered pairs (E(Fq)[4], Ec(Fq)[4]) that can
arise when f(x) has three rational roots and q ≡ 3 mod 4, and then do the same
for q ≡ 1 mod 4, where q and f are allowed to vary subject to these constraints.

Problem 5. Sato-Tate for CM elliptic curves (32 points)

Recall from Lecture 1 that the elliptic curve E/Q defined by y2 = x3 +Ax+B has good
reduction at a prime p whenever p does not divide ∆(E) := −16(4A3 + 27B2). For each
prime p of good reduction, let

ap = p+ 1−#Ep(Fp) and xp = ap/
√
p,

where Ep denotes the reduction of E modulo p.
To create an elliptic curve defined by a short Weierstrass equation in Sage, you can

type E=EllipticCurve([A,B]). To check whether the elliptic curve E has good
reduction at p, use E.has good reduction(p), and to compute ap, use E.ap(p).

In this problem you will investigate the distribution of xp for some elliptic curves
over Q to which the Sato-Tate conjecture does not apply. These are elliptic curves with
complex multiplication (CM for short), a term we will define later in the course. In Sage
you can check for CM using E.has cm().

(a) Let E/Q be the curve defined by y2 = x3 + 1. Compute a list of ap values for the
primes p ≤ 200 where E has good reduction (all but 2 and 3). The following block
of Sage code does this.

E=EllipticCurve([0,1])
for p in primes(0,200):

if E.has_good_reduction(p):
print("%d:%d" % (p, E.ap(p)))

You will notice that many of the ap values are zero. Give a conjectural criterion
for the primes p for which ap = 0. Verify your conjecture for all primes p ≤ 210

where E has good reduction.
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(b) Given a bound B, the nth moment statistic Mn of xp is defined as the average
value of xnp over primes p ≤ B where E has good reduction. In Lecture 1 we saw
that for an elliptic curve over Q without complex multiplication, the sequence of
moment statistics M0,M1,M2, . . . appear to converge to the integer sequence

1, 0, 1, 0, 2, 0, 5, 0, 14, 0, 42, . . . ,

whose odd terms are 0 and whose even terms are the Catalan numbers. Your
goal is to determine an analogous sequence for elliptic curves over Q with complex
multiplication.

To do this efficiently, use the E.aplist() method in Sage. The following block of
code computes the moment statistics M0, . . . ,M10 of xp using the bound B = 2k.

k=12
E=EllipticCurve([0,1])
A=E.aplist(2ˆk)
P=prime_range(0,2ˆk)
X=[A[i]/sqrt(RR(P[i])) for i in range(0,len(A))]
M=[sum([aˆn for a in X])/len(X) for n in [0..10]]
print(M)

(note that use of RR(P[i]) to coerce the prime P[i] to a real number before
taking its square root — without this Sage will use a symbolic representation of
the square root as an algebraic number, which is not what we want). With this
approach we are also including a few ap values at bad primes (which will yield
xp ≈ 0), but this is harmless as long as we make B = 2k large enough.

By computing moment statistics using bounds B = 2k with k = 12, 16, 20, 24,
determine the integers to which the first ten moment statistics appear to converge,
and come up with a conjectural formula for the nth moment (if you get stuck on
this, look at (e) and (f) below). Then test your conjecture by computing the 12th
and 14th moment statistics and comparing the results.

(c) Repeat the analysis in parts (a) and (b) for the following elliptic curves over Q:

y2 = x3 − 595x+ 5586,

y2 = x3 − 608x+ 5776,

y2 = x3 − 9504x+ 365904.

You will probably need to look at more ap values than just up to p ≤ 200 in order
to formulate a criterion for the ap that are zero. Do the xp moment statistics for
these elliptic curves appear to converge to the same sequence you conjectured in
part (b)?

(d) Pick one of the three curves from part (c) and take its quadratic twist by the last
four digits of your student ID. Does this change the sequence of ap values? Does
it change the moment statistics of xp?

(e) Recall that the special orthogonal group SO(2) consists of all matrices of the form
Rθ =

(
cos θ − sin θ
sin θ cos θ

)
. To generate a random matrix in SO(2), one simply picks θ

uniformly at random from the interval [0, 2π); this is the Haar measure on SO(2),
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the unique probability measure that is invariant under the group action. Derive a
formula for the nth moment of the trace of a random matrix in SO(2) by integrating
the nth power of the trace of Rθ over all θ ∈ [0, 2π). Be sure to normalize by 1/(2π)
so that M0 = 1.

(f) The normalizer N(SO(2)) of SO(2) in the special unitary group SU(2) consists of
all matrices of the form Rθ and JRθ, where J =

(
i 0
0 −i

)
. Derive a formula for the

nth moment of the trace of a random matrix in N(SO(2)) (under the Haar measure
on N(SO(2)) one picks θ ∈ [0, 2π) uniformly at random and then takes Rθ or JRθ
with equal probability). Compare the results to the formula you conjectured in
part (b).

Problem 6. Survey (4 points)

Complete the following survey by rating each of the problems you solved on a scale of 1
to 10 according to how interesting you found the problem (1 = “mind numbing,” 10 =
“mind blowing”), and how difficult you found the problem (1 = “trivial,” 10 = “brutal”).
Also estimate the amount of time you spent on each problem to the nearest half hour.

Interest Difficulty Time Spent

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

Please rate each of the following lectures that you attended on a scale of 1 to 10, ac-
cording to the quality of the material (1=“pointless”, 10=“priceless”), the quality of
the presentation (1=“epic fail”, 10=“perfection”), the pace (1=“watching paint dry”,
10=“head still spinning”), and the novelty of the material (1=“old hat”, 10=“all new”).

Date Lecture Topic Material Presentation Pace Novelty

2/17 Introduction

2/22 The group law

2/24 Finite field arithmetic

Feel free to record any additional comments you have on the problem sets or lectures; in
particular, how you think they could be improved (which they surely can!).
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