19 The modular equation

In the previous lecture we defined modular curves as quotients of the extended upper half plane under the action of a congruence subgroup (a subgroup of $\mathrm{SL}_{2}(\mathbb{Z})$ that contains a principal congruence subgroup $\Gamma(N):=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}):\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \equiv_{N}\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right\}$ for some $\left.N \in \mathbb{Z}_{>0}\right)$. Of particular interest is the modular curve $X_{0}(N):=\mathbb{H}^{*} / \Gamma_{0}(N)$, where

$$
\Gamma_{0}(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}): c \equiv 0 \bmod N\right\} .
$$

This modular curve plays a central role in the theory of elliptic curves. One form of the modularity theorem (a special case of which implies Fermat's last theorem) is that every elliptic curve E / \mathbb{Q} admits a morphism $X_{0}(N) \rightarrow E$ for some $N \in \mathbb{Z}_{\geq 1}$. It is also a key ingredient for algorithms that use isogenies of elliptic curves over finite fields, including the Schoof-Elkies-Atkin algorithm, an improved version of Schoof's algorithm that is the method of choice for counting points on elliptic curves over a finite fields of large characteristic. Our immediate interest in the modular curve $X_{0}(N)$ is that we will use it to prove the first main theorem of complex multiplication; among other things, this theorem implies that the j-invariants of elliptic curve E / \mathbb{C} with complex multiplication are algebraic integers.

There are two properties of $X_{0}(N)$ that make it so useful. The first, which we will prove in this lecture, is that it has a canonical model over \mathbb{Q} with integer coefficients; this allows us to interpret $X_{0}(N)$ as a curve over any field, including finite fields. The second is that it parameterizes isogenies between elliptic curves (in a sense that we will make precise in the next lecture). In particular, given the j-invariant of an elliptic curve E and an integer N, we can use our explicit model of $X_{0}(N)$ to determine the j-invariants of all elliptic curves that are related to E by an isogeny whose kernel is a cyclic group of order N.

In order to better understand modular curves, we need to introduce modular functions.

19.1 Modular functions

Modular functions are meromorphic functions on a modular curve. To make this statement precise, we first need to discuss q-expansions. The map $q: \mathbb{H} \rightarrow \mathbb{D}$ defined by

$$
q(\tau)=e^{2 \pi i \tau}=e^{-2 \pi \mathrm{im} \tau}(\cos (2 \pi \mathrm{re} \tau)+i \sin (2 \pi \mathrm{re} \tau))
$$

bijectively maps each vertical strip $\mathbb{H}_{n}:=\{\tau \in \mathbb{H}: n \leq \operatorname{re} \tau<n+1\}$ (for any $n \in \mathbb{Z}$) to the punctured unit disk $\mathbb{D}_{0}:=\mathbb{D}-\{0\}$. We also note that

$$
\lim _{\operatorname{im} \tau \rightarrow \infty} q(\tau)=0
$$

If $f: \mathbb{H} \rightarrow \mathbb{C}$ is a meromorphic function that satisfies $f(\tau+1)=f(\tau)$ for all $\tau \in \mathbb{H}$, then we can write f in the form $f(\tau)=f^{*}(q(\tau))$, where $f^{*}: \mathbb{D}_{0} \rightarrow \mathbb{C}$ is a meromorphic function that we can define by fixing a vertical strip \mathbb{H}_{n} and putting $f^{*}:=f \circ\left(q_{\mid \mathbb{H}_{n}}\right)^{-1}$.

The q-expansion (or q-series) of $f(\tau)$ is obtained by composing the Laurent-series expansion of f^{*} at 0 with the function $q(\tau)$:

$$
f(\tau)=f^{*}(q(\tau))=\sum_{n=-\infty}^{+\infty} a_{n} q(\tau)^{n}=\sum_{n=-\infty}^{+\infty} a_{n} q^{n}
$$

As on the RHS above, it is customary to simply write q for $q(\tau)=e^{2 \pi i \tau}$, as we shall do henceforth; but keep in mind that the symbol q denotes a function of $\tau \in \mathbb{H}$.

If f^{*} is meromorphic at 0 (meaning that $z^{-k} f^{*}(z)$ has an analytic continuation to an open neighborhood of $0 \in \mathbb{D}$ for some $k \in \mathbb{Z}_{\geq 0}$) then the q-expansion of f has only finitely many nonzero a_{n} with $n<0$ and we can write

$$
f(\tau)=\sum_{n=n_{0}}^{\infty} a_{n} q^{n}
$$

with $a_{n_{0}} \neq 0$, where n_{0} is the order of f^{*} at 0 . We then say that f is meromorphic at ∞, and call n_{0} the order of f at ∞.

More generally, if f satisfies $f(\tau+N)=f(\tau)$ for all $\tau \in \mathbb{H}$, then we can write f as

$$
\begin{equation*}
f(\tau)=f^{*}\left(q(\tau)^{1 / N}\right)=\sum_{n=-\infty}^{\infty} a_{n} q^{n / N} \tag{1}
\end{equation*}
$$

and we say that f is meromorphic at ∞ if f^{*} is meromorphic at 0 .
If Γ is a congruence subgroup of level N, then for any Γ-invariant function f we have $f(\tau+N)=f(\tau)\left(\right.$ for $\gamma=\left(\begin{array}{cc}1 & N \\ 0 & 1\end{array}\right) \in \Gamma$ we have $\left.\gamma \tau=\tau+N\right)$, so f can be written as in (1), and it makes sense to say that f is (or is not) meromorphic at ∞.
Definition 19.1. Let $f: \mathbb{H} \rightarrow \mathbb{C}$ be a meromorphic function that is Γ-invariant for some congruence subgroup Γ. The function $f(\tau)$ is said to be meromorphic at the cusps if for every $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$ the function $f(\gamma \tau)$ is meromorphic at ∞.
It follows immediately from the definition that if $f(\tau)$ is meromorphic at the cusps, then for any $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$ the function $f(\gamma \tau)$ is also meromorphic at the cusps. In terms of the extended upper half-plane \mathbb{H}^{*}, notice that for any $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$,

$$
\lim _{i m \tau \rightarrow \infty} \gamma \tau \in \mathbb{P}^{1}(\mathbb{Q})
$$

and recall that $\mathbb{P}^{1}(\mathbb{Q})$ is the $\mathrm{SL}_{2}(\mathbb{Z})$-orbit of $\infty \in \mathbb{H}^{*}$, whose elements are called cusps. To say that $f(\gamma \tau)$ is meromorphic at ∞ is to say that $f(\tau)$ is meromorphic at $\gamma \infty$. To check whether f is meromorphic at the cusps, it suffices to consider a set of Γ-inequivalent cusp representatives $\gamma_{1} \infty, \gamma_{1} \infty, \ldots, \gamma_{n} \infty$, one for each Γ-orbit of $\mathbb{P}^{1}(\mathbb{Q})$; this is a finite set because the congruence subgroup Γ has finite index in $\mathrm{SL}_{2}(\mathbb{Z})$.

If f is a Γ-invariant meromorphic function, then for any $\gamma \in \Gamma$ we must have

$$
\lim _{\operatorname{im} \tau \rightarrow \infty} f(\gamma \tau)=\lim _{\operatorname{im} \tau \rightarrow \infty} f(\tau)
$$

whenever either limit exists, and if neither limit exits then f must still have the same order at ∞ and $\gamma \infty$. Thus if f is meromorphic at the cusps it determines a meromorphic function $g: X_{\Gamma} \rightarrow \mathbb{C}$ on the modular curve $X_{\Gamma}:=\mathbb{H}^{*} / \Gamma$ (as a Riemann surface). Conversely, every meromorphic function $g: X_{\Gamma} \rightarrow \mathbb{C}$ determines a Γ-invariant meromorphic function $f: \mathbb{H} \rightarrow \mathbb{C}$ that is meromorphic at the cusps via $f:=g \circ \pi$, where π is the quotient map $\mathbb{H} \rightarrow \mathbb{H} / \Gamma$.
Definition 19.2. Let Γ be a congruence subgroup. A modular function for Γ is a Γ invariant meromorphic function $f: \mathbb{H} \rightarrow \mathbb{C}$ that is meromorphic at the cusps; equivalently, it is a meromorphic function $g: X_{\Gamma} \rightarrow \mathbb{C}$ (as explained above).

Sums, products, and quotients of modular functions for Γ are modular functions for Γ, as are constant functions, thus the set of all modular functions for Γ forms a field $\mathbb{C}(\Gamma)$ that we view as a transcendental extension of \mathbb{C}. As we will shortly prove for $X_{0}(N)$, modular curves X_{Γ} are not only Riemann surfaces, they are algebraic curves over \mathbb{C}; the field $\mathbb{C}(\Gamma)$ of modular functions for Γ is isomorphic to the function field $\mathbb{C}\left(X_{\Gamma}\right)$ of X_{Γ} / \mathbb{C}.

Remark 19.3. In fact, every compact Riemann surface corresponds to a smooth projective (algebraic) curve over \mathbb{C} that is uniquely determined up to isomorphism. Conversely, if X / \mathbb{C} is a smooth projective curve then the set $X(\mathbb{C})$ can be given a topology and a complex structure that makes it a compact Riemann surface S. The function field of X and the field of meromorphic functions on S are both finite extensions of a purely transcendental extension of \mathbb{C} (of transcendence degree one), and the two fields are isomorphic. We will make this isomorphism completely explicit for $X(1)$ and $X_{0}(N)$.

Remark 19.4. If f is a modular function for a congruence subgroup Γ, then it is also a modular function for any congruence subgroup $\Gamma^{\prime} \subseteq \Gamma$, since Γ-invariance obviously implies Γ^{\prime}-invariance, and the property of being meromorphic at the cusps does not depend on Γ^{\prime}. Thus for all congruence subgroups Γ and Γ^{\prime} we have

$$
\Gamma^{\prime} \subseteq \Gamma \Longrightarrow \mathbb{C}(\Gamma) \subseteq \mathbb{C}\left(\Gamma^{\prime}\right)
$$

and the corresponding inclusion of function fields $\mathbb{C}\left(X_{\Gamma}\right) \subseteq \mathbb{C}\left(X_{\Gamma^{\prime}}\right)$ induces a morphism $X_{\Gamma^{\prime}} \rightarrow X_{\Gamma}$ of algebraic curves, a fact that has many useful applications.

19.2 Modular Functions for $\Gamma(1)$

We first consider the modular functions for $\Gamma(1)=\mathrm{SL}_{2}(\mathbb{Z})$. In Lecture 15 we proved that the j-function is $\Gamma(1)$-invariant and holomorphic (hence meromorphic) on \mathbb{H}. To show that the $j(\tau)$ is a modular function for $\Gamma(1)$ we just need to show that it is meromorphic at the cusps. The cusps are all $\Gamma(1)$-equivalent, so it suffices to show that the $j(\tau)$ is meromorphic at ∞, which we do by computing its q-expansion. We first record the following lemma, which was used in Problem Set 8.

Lemma 19.5. Let $\sigma_{k}(n)=\sum_{d \mid n} d^{k}$, and let $q=e^{2 \pi i \tau}$. We have

$$
\begin{gathered}
g_{2}(\tau)=\frac{4 \pi^{4}}{3}\left(1+240 \sum_{n=1}^{\infty} \sigma_{3}(n) q^{n}\right) \\
g_{3}(\tau)=\frac{8 \pi^{6}}{27}\left(1-504 \sum_{n=1}^{\infty} \sigma_{5}(n) q^{n}\right) \\
\Delta(\tau)=g_{2}(\tau)^{3}-27 g_{3}(\tau)^{2}=(2 \pi)^{12} q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24} .
\end{gathered}
$$

Proof. See Washington [1, pp. 273-274].
Corollary 19.6. With $q=e^{2 \pi i \tau}$ we have

$$
j(\tau)=\frac{1}{q}+744+\sum_{n=1}^{\infty} a_{n} q^{n}
$$

where the a_{n} are integers.

Proof. Applying Lemma 19.5 yields

$$
\begin{aligned}
g_{2}(\tau)^{3} & =\frac{64}{27} \pi^{12}\left(1+240 q+2160 q^{2}+\cdots\right)^{3}=\frac{64}{27} \pi^{12}\left(1+720 q+179280 q^{2}+\cdots\right), \\
27 g_{3}(\tau)^{2} & =\frac{64}{27} \pi^{12}\left(1-504 q-16632 q^{2}-\cdots\right)^{2}=\frac{64}{27} \pi^{12}\left(1-1008 q+220752 q^{2}+\cdots\right), \\
\Delta(\tau) & =\frac{64}{27} \pi^{12}\left(1728 q-41472 q^{2}+\cdots\right)=\frac{64}{27} \pi^{12} 1728 q\left(1-24 q+252 q^{2}+\cdots\right),
\end{aligned}
$$

and we then have

$$
j(\tau)=\frac{1728 g_{2}(\tau)^{3}}{\Delta(\tau)}=\frac{1}{q}+744+\sum_{n=1}^{\infty} a_{n} q^{n}
$$

with $a_{n} \in \mathbb{Z}$, since $1-24 q+252 q^{2}+\cdots$ is an element of $1+\mathbb{Z}[[x]]$, hence invertible.
Remark 19.7. The proof of Corollary 19.6 explains the factor 1728 that appears in the definition of the j-function: it is the least positive integer that ensures that the q-expansion of $j(\tau)$ has integral coefficients.

The corollary implies that the j-function is a modular function for $\Gamma(1)$, with a simple pole at ∞. We proved in Theorem 18.5 that the j-function defines a holomorphic bijection from $Y(1)=\mathbb{H} / \Gamma(1)$ to \mathbb{C}. If we extend the domain of j to \mathbb{H}^{*} by defining $j(\infty)=\infty$, then the j-function defines an isomorphism from $X(1)$ to the Riemann sphere $\mathcal{S}:=\mathbb{P}^{1}(\mathbb{C})$ that is holomorphic everywhere except for a simple pole at ∞. In fact, if we fix $j(\rho)=0$, $j(i)=1728$, and $j(\infty)=\infty$, then the j-function is uniquely determined by this property (as noted above, we put $j(i)=1728$ to obtain an integral q-expansion). It is for this reason that the j-function is sometimes referred to as the modular function. Indeed, every modular function for $\Gamma(1)=\mathrm{SL}_{2}(\mathbb{Z})$ can be written in terms of the j-function.

Theorem 19.8. Every modular function for $\Gamma(1)$ is a rational function of $j(\tau)$; in other words $\mathbb{C}(\Gamma(1))=\mathbb{C}(j)$.

Proof. As noted above, the j-function is a modular function for $\Gamma(1)$, so $\mathbb{C}(j) \subseteq \mathbb{C}(\Gamma(1))$. If $g: X(1) \rightarrow \mathbb{C}$ is a modular function for $\Gamma(1)$ then $f:=g \circ j^{-1}: \mathcal{S} \rightarrow \mathbb{C}$ is meromorphic, and Lemma 19.9 below implies that f is a rational function. Thus $g=f \circ j \in \mathbb{C}(j)$.

Lemma 19.9. Every meromorphic function $f: \mathcal{S} \rightarrow \mathbb{C}$ on the Riemann sphere $\mathcal{S}:=\mathbb{P}^{1}(\mathbb{C})$ is a rational function.

Proof. Let $f: \mathcal{S} \rightarrow \mathbb{C}$ be a nonzero meromorphic function. We may assume without loss of generality that f has no zeros or poles at $\infty:=(1: 0)$, since we can always apply a linear fractional transformation $\gamma \in \mathrm{SL}_{2}(\mathbb{C})$ to move a point where f does not have a pole or a zero to ∞ and replace f by $f \circ \gamma$ (note that γ and γ^{-1} are rational functions, and if $f \circ \gamma$ is a rational function, so is $f=f \circ \gamma \circ \gamma^{-1}$).

Let $\left\{p_{i}\right\}$ be the set of poles of $f(z)$, with orders $m_{i}:=-\operatorname{ord}_{p_{i}}(f)$, and let $\left\{q_{j}\right\}$ be the set of zeros of f, with orders $n_{j}:=\operatorname{ord}_{q_{j}}(f)$. We claim that

$$
\sum_{i} m_{i}=\sum_{j} n_{j} .
$$

To see this, triangulate \mathcal{S} so that all the poles and zeros of $f(z)$ lie in the interior of a triangle. It follows from Cauchy's argument principle (Theorem 14.17) that the contour integral

$$
\int_{\Delta} \frac{f^{\prime}(z)}{f(z)} d z
$$

about each triangle (oriented counter clockwise) is the difference between the number of zeros and poles that $f(z)$ in its interior. The sum of these integrals must be zero, since each edge in the triangulation is traversed twice, once in each direction.

The function $h: \mathcal{S} \rightarrow \mathbb{C}$ defined by

$$
h(z)=f(z) \cdot \frac{\prod_{i}\left(z-p_{i}\right)^{m_{i}}}{\prod_{j}\left(z-q_{j}\right)^{n_{j}}}
$$

has no zeros or poles on \mathcal{S}. It follows from Liouville's theorem (Theorem 14.30) that h is a constant function, and therefore $f(z)$ is a rational function of z.

Corollary 19.10. Every modular function $f(\tau)$ for $\Gamma(1)$ that is holomorphic on \mathbb{H} is a polynomial in $j(\tau)$.

Proof. Theorem 19.8 implies that f can be written as a rational function of j, so

$$
f(\tau)=c \frac{\prod_{i}\left(j(\tau)-\alpha_{i}\right)}{\prod_{k}\left(j(\tau)-\beta_{k}\right)},
$$

for some $c, \alpha_{i}, \beta_{j} \in \mathbb{C}$. Now the restriction of j to any fundamental region for $\Gamma(1)$ is a bijection, so $f(\tau)$ must have a pole at $j^{-1}\left(\beta_{k}\right)$ for each β_{k}. But $f(\tau)$ is holomorphic and therefore has no poles, so the set $\left\{\beta_{j}\right\}$ is empty and $f(\tau)$ is a polynomial in $j(\tau)$.

We proved in the previous lecture that the j-function $j: X(1) \xrightarrow{\sim} \mathcal{S}$ determines an isomorphism of Riemann surfaces. As an algebraic curve over \mathbb{C}, the function field of $X(1) \simeq$ $\mathcal{S}=\mathbb{P}^{1}(\mathbb{C})$ is the rational function field $\mathbb{C}(t)$, and we have just shown that the field of modular functions for $\Gamma(1)$ is the field $\mathbb{C}(j)$ of rational functions of j. Thus, as claimed in Remark 19.3, the function field $\mathbb{C}(X(1))=\mathbb{C}(t)$ and the field of modular functions $\mathbb{C}(\Gamma(1))=\mathbb{C}(j)$ are isomorphic, with the isomorphism given by $t \mapsto j$. More generally, for every congruence subgroup Γ, the field $\mathbb{C}\left(X_{\Gamma}\right) \simeq \mathbb{C}(\Gamma)$ is a finite extension of $\mathbb{C}(t) \simeq \mathbb{C}(j)$.

Theorem 19.11. Let Γ be a congruence subgroup. The field $\mathbb{C}(\Gamma)$ of modular functions for Γ is a finite extension of $\mathbb{C}(j)$ of degree at most $n:=[\Gamma(1): \Gamma]$.

Proof. Let γ_{1} be the identity in $\Gamma(1)$ and let $\left\{\gamma_{1}, \cdots, \gamma_{n}\right\} \subseteq \Gamma(1)$ be a set of right coset representatives for Γ as a subgroup of $\Gamma(1)$ (so $\Gamma(1)=\Gamma \gamma_{1} \sqcup \cdots \sqcup \Gamma \gamma_{n}$).

Let $f \in \mathbb{C}(\Gamma)$ and for $1 \leq i \leq n$ define $f_{i}(\tau):=f\left(\gamma_{i} \tau\right)$. For any $\gamma_{i}^{\prime} \in \Gamma \gamma_{i}$ the functions $f\left(\gamma_{i}^{\prime} \tau\right)$ and $f\left(\gamma_{i} \tau\right)$ are the same, since f is Γ-invariant. For any $\gamma \in \Gamma(1)$, the set of functions $\left\{f\left(\gamma_{i} \gamma \tau\right)\right\}$ is therefore equal to the set of functions $\left\{f\left(\gamma_{i} \tau\right)\right\}$, since multiplication on the right by γ permutes the cosets $\left\{\Gamma \gamma_{i}\right\}$. Any symmetric polynomial in the functions f_{i} is thus Γ (1)invariant, and meromorphic at the cusps (since f, and therefore each f_{i}, is), hence an element of $\mathbb{C}(j)$, by Theorem 19.8. Now let

$$
P(Y)=\prod_{i \in\{1, \cdots, n\}}\left(Y-f_{i}\right) .
$$

Then $f=f_{1}$ is a root of P (since γ_{1} is the identity), and the coefficients of $P(Y)$ lie in $\mathbb{C}(j)$, since they are all symmetric polynomials in the f_{i}.

It follows that every $f \in \mathbb{C}(\Gamma)$ is the root of a monic polynomial in $\mathbb{C}(j)[Y]$ of degree n; this implies that $\mathbb{C}(\Gamma) / \mathbb{C}(j)$ is an algebraic extension, and it is separable, since we are in characteristic zero. We now claim that $\mathbb{C}(\Gamma)$ is finitely generated: if not we could pick functions $g_{1}, \ldots, g_{n+1} \in \mathbb{C}(\Gamma)$ such that

$$
\mathbb{C}(j) \subsetneq \mathbb{C}(j)\left(g_{1}\right) \subsetneq \mathbb{C}(j)\left(g_{1}, g_{2}\right) \subsetneq \cdots \subsetneq \mathbb{C}(j)\left(g_{1}, \ldots, g_{n+1}\right) .
$$

But then $\mathbb{C}(j)\left(g_{1}, \ldots, g_{n+1}\right)$ is a finite separable extension of $\mathbb{C}(j)$ of degree at least $n+1$, and the primitive element theorem implies it is generated by some $g \in \mathbb{C}(\Gamma)$ whose minimal polynomial most have degree greater than n, which is a contradiction. The same argument then shows that $[\mathbb{C}(\Gamma): \mathbb{C}(j)] \leq n$.

Remark 19.12. If $-I \in \Gamma$ then in fact $[\mathbb{C}(\Gamma(1)): \mathbb{C}(\Gamma)]=[\Gamma(1): \Gamma]$; we will prove this for $\Gamma=\Gamma_{0}(N)$ in the next section. In general $[\mathbb{C}(\Gamma(1)): \mathbb{C}(\Gamma)]=[\bar{\Gamma}(1): \bar{\Gamma}]$, where $\bar{\Gamma}$ denotes the image of Γ in $\mathrm{PSL}_{2}(\mathbb{Z}):=\operatorname{SL}_{2}(\mathbb{Z}) /\{ \pm I\}$.

19.2.1 Modular functions for $\Gamma_{0}(N)$

We now consider modular functions for the congruence subgroup $\Gamma_{0}(N)$.
Theorem 19.13. The function $j_{N}(\tau):=j(N \tau)$ is a modular function for $\Gamma_{0}(N)$.
Proof. The function $j_{N}(\tau)$ is obviously meromorphic (in fact holomorphic) on \mathbb{H}, since $j(\tau)$ is, and it is meromorphic at the cusps for the same reason (note that τ is a cusp if and only if $N \tau$ is). We just need to show that $j_{N}(\tau)$ is $\Gamma_{0}(N)$-invariant.

Let $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{0}(N)$. Then $c \equiv 0 \bmod N$ and

$$
j_{N}(\gamma \tau)=j(N \gamma \tau)=j\left(\frac{N(a \tau+b)}{c \tau+d}\right)=j\left(\frac{a N \tau+b N}{\frac{c}{N} N \tau+d}\right)=j\left(\gamma^{\prime} N \tau\right)=j(N \tau)=j_{N}(\tau),
$$

where

$$
\gamma^{\prime}=\left(\begin{array}{cc}
a & b N \\
c / N & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})
$$

since c / N is an integer and $\operatorname{det}\left(\gamma^{\prime}\right)=\operatorname{det}(\gamma)=1$. Thus $j_{N}(\tau)$ is $\Gamma_{0}(N)$-invariant.
Theorem 19.14. The field of modular functions for $\Gamma_{0}(N)$ is an extension of $\mathbb{C}(j)$ of degree $n:=\left[\Gamma(1): \Gamma_{0}(N)\right]$ generated by $j_{N}(\tau)$.

Proof. By the previous theorem, we have $j_{N} \in \mathbb{C}\left(\Gamma_{0}(N)\right)$, and from Theorem 19.11 we know that $\mathbb{C}\left(\Gamma_{0}(N)\right)$ is a finite extension of $\mathbb{C}(j)$ of degree at most n, so it suffices to show that the minimal polynomial of j_{N} over $\mathbb{C}(j)$ has degree at least n.

As in the proof of Theorem 19.11, let us fix right coset representatives $\left\{\gamma_{1}, \cdots, \gamma_{n}\right\}$ for $\Gamma_{0}(N) \subseteq \Gamma(1)$, and let $P \in \mathbb{C}(j)[Y]$ be the minimal polynomial of j_{N} over $\mathbb{C}(j)$. We may view $P\left(j(\tau), j_{N}(\tau)\right)$ as a function of τ, which must be the zero function. If we replace τ by $\gamma_{i} \tau$ then for each γ_{i} we have

$$
0=P\left(j\left(\gamma_{i} \tau\right), j_{N}\left(\gamma_{i} \tau\right)\right)=P\left(j(\tau), j_{N}\left(\gamma_{i} \tau\right)\right)
$$

so the function $j_{N}\left(\gamma_{i} \tau\right)$ is also a root of $P(Y)$.

To prove that $\operatorname{deg} P \geq n$ it suffices to show that the n functions $j_{N}\left(\gamma_{i} \tau\right)$ are distinct. Suppose not. Then $j\left(N \gamma_{i} \tau\right)=j\left(N \gamma_{k} \tau\right)$ for some $i \neq k$ and $\tau \in \mathbb{H}$ that we can choose to have stabilizer $\pm I$. Fix a fundamental region \mathcal{F} for $\mathbb{H} / \Gamma(1)$ and pick $\alpha, \beta \in \Gamma(1)$ so that $\alpha N \gamma_{i} \tau$ and $\beta N \gamma_{k} \tau$ lie in \mathcal{F}. The j-function is injective on \mathcal{F}, so

$$
j\left(\alpha N \gamma_{i} \tau\right)=j\left(\beta N \gamma_{k} \tau\right) \quad \Longleftrightarrow \quad \alpha N \gamma_{i} \tau= \pm \beta N \gamma_{k} \tau \quad \Longleftrightarrow \quad \alpha N \gamma_{i}= \pm \beta N \gamma_{k},
$$

where we may view N as the matrix $\left(\begin{array}{cc}N & 0 \\ 0 & 1\end{array}\right)$, since $N \tau=\frac{N \tau+0}{0 \tau+1}$.
Now let $\gamma=\alpha^{-1} \beta=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. We have

$$
\left(\begin{array}{cc}
N & 0 \\
0 & 1
\end{array}\right) \gamma_{i}= \pm\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{cc}
N & 0 \\
0 & 1
\end{array}\right) \gamma_{k},
$$

and therefore

$$
\gamma_{i} \gamma_{k}^{-1}= \pm\left(\begin{array}{cc}
1 / N & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{cc}
N & 0 \\
0 & 1
\end{array}\right)= \pm\left(\begin{array}{cc}
a & b / N \\
c N & d
\end{array}\right) .
$$

We have $\gamma_{i} \gamma_{k}^{-1} \in \mathrm{SL}_{2}(\mathbb{Z})$, so b / N is an integer, and $c N \equiv 0 \bmod N$, so $\gamma_{i} \gamma_{k}^{-1} \in \Gamma_{0}(N)$. But then γ_{i} and γ_{k} lie in the same right coset of $\Gamma_{0}(N)$, which is a contradiction.

19.3 The modular polynomial

Definition 19.15. The modular polynomial Φ_{N} is the minimal polynomial of j_{N} over $\mathbb{C}(j)$.
It follows from the proof of Theorem 19.14, we may write $\Phi_{N} \in \mathbb{C}(j)[Y]$ as

$$
\Phi_{N}(Y)=\prod_{i=1}^{n}\left(Y-j_{N}\left(\gamma_{i} \tau\right)\right),
$$

where $\left\{\gamma_{1}, \ldots \gamma_{n}\right\}$ is a set of right coset representatives for $\Gamma_{0}(N)$. The coefficients of $\Phi_{N}(Y)$ are symmetric polynomials in $j_{N}\left(\gamma_{i} \tau\right)$, so as in the proof of Theorem 19.11 they are $\Gamma(1)$ invariant. They are holomorphic on \mathbb{H}, so they are polynomials in j, by Corollary 19.10. Thus $\Phi_{N} \in \mathbb{C}[j, Y]$. If we replace every occurrence of j in Φ_{N} with a new variable X we obtain a polynomial in $\mathbb{C}[X, Y]$ that we write as $\Phi_{N}(X, Y)$.

Our next task is to prove that the coefficients of $\Phi_{N}(X, Y)$ are actually integers, not just complex numbers. To simplify the presentation, we will prove this only prove for prime N, which is all that is needed in most practical applications (such as the SEA algorithm), and suffices to prove the main theorem of complex multiplication. The proof for composite N is essentially the same, but explicitly writing down a set of right coset representatives γ_{i} and computing the q-expansions of the functions $j_{N}\left(\gamma_{i} \tau\right)$ is more complicated.

We begin by fixing a specific set of right coset representatives for $\Gamma_{0}(N)$.
Lemma 19.16. For prime N we can write the right cosets of $\Gamma_{0}(N)$ in $\Gamma(1)$ as

$$
\left\{\Gamma_{0}(N)\right\} \cup\left\{\Gamma_{0}(N) S T^{k}: 0 \leq k<N\right\},
$$

where $S=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ and $T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.

Proof. We first show that the these cosets cover $\Gamma(1)$. Let $\gamma=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in \Gamma$. If $c \equiv 0 \bmod N$, then $\gamma \in \Gamma_{0}(N)$ lies in the first coset. Otherwise, pick $k \in[0, N-1]$ so that $k c \equiv d \bmod N$ (c is nonzero modulo the prime N, so this is possible), and let

$$
\gamma_{0}:=\left(\begin{array}{ll}
k a-b & a \\
k c-d & c
\end{array}\right) \in \Gamma_{0}(N)
$$

Then

$$
\gamma_{0} S T^{k}=\left(\begin{array}{cc}
k a-b & a \\
k c-d & c
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & k
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\gamma
$$

lies in $\Gamma_{0}(N) S T^{k}$.
We now show the cosets are distinct. Suppose not. Then there must exist $\gamma_{1}, \gamma_{2} \in \Gamma_{0}(N)$ such that either (a) $\gamma_{1}=\gamma_{2} S T^{k}$ for some $0 \leq k<N$, or (b) $\gamma_{1} S T^{j}=\gamma_{2} S T^{k}$ with $0 \leq j<k<N$. Let $\gamma_{2}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. In case (a) we have

$$
\gamma_{1}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & k
\end{array}\right)=\left(\begin{array}{cc}
b & b k-a \\
d & d k-c
\end{array}\right) \in \Gamma_{0}(N)
$$

which implies $d \equiv 0 \bmod N$ and det $\gamma_{2}=a d-b c \equiv 0 \bmod N$, a contradiction. In case (b), with $m=k-j$ we have

$$
\gamma_{1}=\gamma_{2} S T^{m} S^{-1}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & m
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)=\left(\begin{array}{ll}
a-b m & b \\
c-d m & d
\end{array}\right) \in \Gamma_{0}(N)
$$

Thus $c-d m \equiv 0 \bmod N$, and since $c \equiv 0 \bmod N$ and $m \not \equiv 0 \bmod N$, we must have $d \equiv 0 \bmod N$, which again implies $\operatorname{det} \gamma_{2}=a d-b c \equiv 0 \bmod N$, a contradiction.

Theorem 19.17. $\Phi_{N} \in \mathbb{Z}[X, Y]$.
Proof (for N prime). Let $\gamma_{k}:=S T^{k}$. By Lemma 19.16 we have

$$
\Phi_{N}(Y)=\left(Y-j_{N}(\tau)\right) \prod_{k=0}^{N-1}\left(Y-j_{N}\left(\gamma_{k} \tau\right)\right)
$$

Let $f(\tau)$ be a coefficient of $\Phi_{N}(Y)$. Then $f(\tau)$ is holomorphic function on \mathbb{H}, since $j(\tau)$ is, and $f(\tau)$ is $\Gamma(1)$-invariant, since it is symmetric polynomial in $j_{N}(\tau)$ and the functions $j_{N}\left(\gamma_{k} \tau\right)$, corresponding to a complete set of right coset representatives for $\Gamma_{0}(N)$; and $f(\tau)$ is meromorphic at the cusps, since it is a polynomial in functions that are meromorphic at the cusps. Thus $f(\tau)$ is a modular function for $\Gamma(1)$ holomorphic on \mathbb{H} and therefore a polynomial in $j(\tau)$, by Corollary 19.10. By Lemma 19.18 below, if we can show that the q-expansion of $f(\tau)$ has integer coefficients, then it will follow that $f(\tau)$ is an integer polynomial in $j(\tau)$ and therefore $\Phi_{N} \in \mathbb{Z}[X, Y]$.

We first show that the q-expansion of $f(\tau)$ has rational coefficients. We have

$$
j_{N}(\tau)=j(N \tau)=\frac{1}{q^{N}}+744+\sum_{n=1}^{\infty} a_{n} q^{n N}
$$

where the a_{n} are integers, thus $j_{N} \in \mathbb{Z}((q))$. For $j_{N}\left(\gamma_{k} \tau\right)$, we have

$$
\begin{aligned}
j_{N}\left(\gamma_{k} \tau\right)=j\left(N \gamma_{k} \tau\right) & =j\left(\left(\begin{array}{cc}
N & 0 \\
0 & 1
\end{array}\right) S T^{k} \tau\right) \\
& =j\left(S\left(\begin{array}{cc}
1 & 0 \\
0 & N
\end{array}\right)\left(\begin{array}{cc}
1 & k \\
0 & 1
\end{array}\right) \tau\right)=j\left(\left(\begin{array}{cc}
1 & 0 \\
0 & N
\end{array}\right)\left(\begin{array}{cc}
1 & k \\
0 & 1
\end{array}\right) \tau\right)=j\left(\frac{\tau+k}{N}\right)
\end{aligned}
$$

where we are able to drop the S because $j(\tau)$ is Γ-invariant. If we let $\zeta_{N}=e^{\frac{2 \pi i}{N}}$, then

$$
q((\tau+k) / N)=e^{2 \pi i\left(\frac{\tau+k}{N}\right)}=e^{2 \pi i \frac{k}{N}} q^{1 / N}=\zeta_{N}^{k} q^{1 / N},
$$

and

$$
j_{N}\left(\gamma_{k} \tau\right)=\frac{\zeta_{N}^{-k}}{q^{1 / N}}+\sum_{n=0}^{\infty} a_{n} \zeta_{N}^{k n} q^{n / N}
$$

thus $j_{N}\left(\gamma_{k} \tau\right) \in \mathbb{Q}\left(\zeta_{N}\right)\left(\left(q^{1 / N}\right)\right)$. The action of the Galois group $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{N}\right) / \mathbb{Q}\right)$ on the coefficients of the q-expansions of each $j_{N}\left(\gamma_{k} \tau\right)$ induces a permutation of the set $\left\{j_{N}\left(\gamma_{k} \tau\right)\right\}$ and fixes $j_{N}(\tau)$. It follows that the coefficients of the q-expansion of f are fixed by $\left.\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{N}\right)\right) / \mathbb{Q}\right)$ and must lie in \mathbb{Q}. Thus $f \in \mathbb{Q}\left(\left(q^{1 / N}\right)\right)$, and $f(\tau)$ is a polynomial in $j(\tau)$, so its q-expansion contains only integral powers of q and $f \in \mathbb{Q}((q))$.

We now note that the coefficients of the q-expansion of $f(\tau)$ are algebraic integers, since the coefficients of the q-expansions of $j_{N}(\tau)$ and the $j_{N}\left(\gamma_{k}\right)$ are algebraic integers, as is any polynomial combination of them. This implies $f(\tau) \in \mathbb{Z}((q))$.

Lemma 19.18 (Hasse q-expansion principle). Let $f(\tau)$ be a modular function for $\Gamma(1)$ that is holomorphic on \mathbb{H} and whose q-expansion has coefficients that lie in an additive subgroup A of \mathbb{C}. Then $f(\tau)=P(j(\tau))$, for some polynomial $P \in A[X]$.

Proof. By Corollary 19.10, we know that $f(\tau)=P(j(\tau))$ for some $P \in \mathbb{C}[X]$, we just need to show that $P \in A[X]$. We proceed by induction on $d=\operatorname{deg} P$. The lemma clearly holds for $d=0$, so assume $d>0$. The q-expansion of the j-function begins with q^{-1}, so the q-expansion of $f(\tau)$ must have the form $\sum_{n=-d}^{\infty} a_{n} q^{n}$, with $a_{n} \in A$ and $a_{-d} \neq 0$. Let $P_{1}(X)=P(X)-a_{-d} X^{d}$, and let $f_{1}(\tau)=P_{1}(j(\tau))=f(\tau)-a_{-d} j(\tau)^{d}$. The q-expansion of the function $f_{1}(\tau)$ has coefficients in A, and by the inductive hypothesis, so does $P_{1}(X)$, and therefore $P(X)=P_{1}(X)+a_{-d} X^{d}$ also has coefficients in A.

References

[1] Lawrence C. Washington, Elliptic curves: Number theory and cryptography, second edition, Chapman \& Hall/CRC, 2008.

MIT OpenCourseWare
https://ocw.mit.edu
18.783 / 18.7831 Elliptic Curves

Spring 2021

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

