18.783 Elliptic Curves Lecture 10

Andrew Sutherland

March 24, 2021

Generic bounds for the discrete logarithm problem (DLP)

Baby-steps giant-steps: $(2+o(1)) \sqrt{N}$ time (gops), $(2+o(1)) \sqrt{N}$ space (gids).
Pollard- $\boldsymbol{\rho}$ (Las Vegas): $(\sqrt{\pi / 2}+o(1)) \sqrt{N}$ expected time, $O(\log N)$ space.
Pohlig-Hellman: Up to a log-factor, we can assume we have a group of prime order.

Theorem (Shoup)

Let G be cyclic group of prime order N.

- Every deterministic generic algorithm for the discrete logarithm problem in G uses at least $(\sqrt{2}+o(1)) \sqrt{N}$ group operations.
- Every Las Vegas generic algorithm for the discrete logarithm problem in G expects to use at least $(\sqrt{2} / 2+o(1)) \sqrt{N}$ group operations.

Shoup's lower bounds match the upper bounds to within a factor of 2 .

Index calculus: a non-generic algorithm for the DLP

Let $G=\langle\alpha\rangle=(\mathbb{Z} / p \mathbb{Z})^{\times}$and identify G with $[1, N] \cap \mathbb{Z}$, where $N=\# G=p-1$. For $e \in \mathbb{Z}$ we can use the prime factorization $\alpha^{e} \beta^{-1}=\prod_{i} p_{i}^{e_{i}}$ to obtain a relation

$$
\begin{equation*}
e_{1} \log _{\alpha} p_{1}+\cdots+e_{b} \log _{\alpha} p_{b}+\log _{\alpha} \beta=e . \tag{1}
\end{equation*}
$$

which would allow us to compute $\log _{\alpha} \beta$ if we knew the values of $\log _{\alpha} p_{i}$.
Our plan: Pick a smallish set of primes $S=\{p: p \leq B\}=p_{1}, \ldots p_{b}$ (the factor base), and generate relations as in (1) by picking random $e \in[1, N]$ and attempting to factor $\alpha^{e} \beta^{-1}$ over our factor base (e.g. by trial division, or something more clever).

How we win: Collect relations that uniquely determine $\log _{\alpha} p_{1}, \ldots, \log _{\alpha} p_{b}, \log _{\alpha} \beta$ and use linear algebra over the ring $\mathbb{Z} / N \mathbb{Z}$ to solve the system for $\log _{\alpha} \beta$.

When we expect to win: After about $\pi(B) \cdot N / \psi(N, B)$ attempts, where $\psi(N, B)$ is the number of B-smooth integers in $[1, N]$, those use prime factors are all less than B.

Optimizing the smoothness bound B

Theorem (Canfield-Erdős-Pomerance)

As $u, x \rightarrow \infty$ with $u<(1-\epsilon) \log x / \log \log x$ we have $\psi\left(x, x^{1 / u}\right)=x u^{-u+o(u)}$.

With trial division factoring takes $O(\pi(B) \mathrm{M}(\log N))$ time and we expect to need

$$
O\left(\pi(B) u^{u} \pi(B) \mathrm{M}(\log N)\right) \approx B^{2} u^{u}=N^{2 / u} u^{u}
$$

time to get enough relations, where $u:=\log N / \log B$ so that $N^{1 / u}=B$.
To minimize $f(u):=\log \left(N^{2 / u} u^{u}\right)=\frac{2}{u} \log N+u \log u$ we want to choose u so that

$$
f^{\prime}(u)=-2 u^{-2} \log N+2(u N)^{-1}+\log u+1=0 .
$$

Ignoring $O(1)$ terms, we want $u^{2} \log u \approx 2 \log N$, meaning $u \approx 2 \sqrt{\log N / \log \log N}$.

Expected running time of our index calculus algorithm

Our choice of $u \approx 2 \sqrt{\log N / \log \log N}$ yields the smoothness bound

$$
B=N^{1 / u}=\exp \left(u^{-1} \log N\right)=\exp (1 / 2 \sqrt{\log N \log \log N})=L_{N}[1 / 2,1 / 2]
$$

where we have used the standard subexponential asymptotic notation

$$
L_{N}[a, c]:=\exp \left((c+o(1))(\log N)^{a}(\log \log N)^{1-a}\right)
$$

interpolating $L_{N}[0, c]=(\log N)^{c+o(1)}$ (polynomial), $L_{N}[1, c]=N^{c+o(1)}$ (exponential).
Assuming the linear algebra is negligible (it is), the total expected time is

$$
B^{2} u^{u}=L_{N}[1 / 2,1 / 2]^{2} \cdot L_{N}[1 / 2,1]=L_{N}[1 / 2,2] .
$$

With ECM, smoothness testing becomes negligible and we can achieve $L_{N}[1 / 2, \sqrt{2}]$. More sophisticated techniques (NFS) heuristically yield $L_{N}\left[1 / 3,(64 / 9)^{1 / 3}\right]$.

The Pollard $p-1$ factorization method

Algorithm

Given an integer N and a smoothness bound B, attempt to factor N as follows:

1. Pick a random integer $a \in[1, N-1]$; if $\operatorname{gcd}(a, N)=d \neq 1$ return $(d, N / d)$.
2. Set $b=a$ and for increasing primes $\ell \leq B$:
2.1 Replace b with $b^{\ell^{e}}$ where $\ell^{e-1}<N \leq \ell^{e}$. If $b=1$ then give up.
2.2 if $\operatorname{gcd}(b-1, N)=d \neq 1$ then return $(d, N / d)$.

Theorem

Let $p, q \mid N$ be primes. If $p-1$ is ℓ-smooth but $q-1$ is not for some prime $\ell \leq B$ then the algorithm succeeds with probability at least $1-1 /(\ell+1)$.
Proof. When we reach ℓ in 2.2 we will have $b=a^{m} \equiv 1 \bmod p$, since $(p-1) \mid m$. But $(q-1) \perp m$, so $\operatorname{Pr}[b \not \equiv 1 \bmod q] \geq 1-1 /(\ell+1)$.

Robbing a random bank

If $\#(\mathbb{Z} / N \mathbb{Z})^{\times}$has a B-smooth prime factor then Pollard's algorithm is very likely to succeed, but this is unlikely for any particular $N=p q$ a product of two large primes.

For random $p q$ in $[N, 2 N]$ we expect the probability is u^{-u}, where $u=\log N / \log B$. That is small, but only subexponentially so; if we try u^{u} random $p q$ we should succeed.

If we let $u=\sqrt{2 \log N / \log \log N}$, then $B=N^{1 / u}=L_{N}[1 / 2,1 / \sqrt{2}]$ and we should expect to factor a random $p q$ in $[N, 2 N]$ in time $N^{1 / u} u^{u}=L_{N}[1 / 2, \sqrt{2}]$.

Key point: By varying $p q$ we vary the group $(\mathbb{Z} / p q \mathbb{Z})^{\times}$. But what if $p q$ is fixed?
Lenstra: We can vary the group by picking a random elliptic curve "modulo $p q$ ".

The elliptic curve factorization method (ECM)

Algorithm

Given $N \in \mathbb{Z}$, a smoothness bound B, and a prime bound M, attempt to factor N :

1. Pick random $a, x_{0}, y_{0} \in[0, N-1]$ and set $b=y_{0}^{2}-x_{0}^{3}-a x_{0}$.
2. if $d=\operatorname{gcd}\left(4 a^{3}+27 b^{2}, N\right) \neq 1$ return $(d, N / d)$ if $d<N$ but give up if $d=N$.
3. Let $Q=\left(x_{0}: y_{0}: 1\right)$ and for increasing primes $\ell \leq B$:
3.1 Replace Q with $\ell^{e} Q \bmod N$ where $\ell^{e-1} \leq(\sqrt{M}+1)^{2}<\ell^{e}$. Give up if $Q_{z}=0$.
3.2 If $d=\operatorname{gcd}\left(Q_{z}, N\right) \neq 1$ then return $(d, N / d)$.

Theorem

Let P_{1} and P_{2} be the reductions of $\left(x_{0}: y_{0}: 1\right)$ modulo distinct $p_{0}, p_{1} \mid N$ with $p_{1} \leq M$. If $\left|P_{1}\right|$ is ℓ-smooth and $\left|P_{2}\right|$ is not for some $\ell \leq B$ then the algorithm succeeds in 3.2.

Heuristic complexity of ECM

The Hasse interval $[p+1-2 \sqrt{p}, p+1+2 \sqrt{p}]$ is too narrow to apply CEP bounds. We can prove $\# E\left(\mathbb{F}_{p}\right) \in[p+1-\sqrt{p}, p+1+\sqrt{p}]$ with probability at least $1 / 2$, and roughly uniformly distributed over this interval (Sato-Tate on average).

If we heuristically assume integers in $[p+1-\sqrt{p}, p+1+\sqrt{p}]$ are as likely to be smooth as integers in $[p, 2 p]$ we can compute the optimal choice of $B=L_{M}[1 / 2,1 / \sqrt{2}]$. We generally don't know what M should be, so start small and double it. This yields

$$
L_{p}\left[{ }^{1} / 2, \sqrt{2}\right] \mathrm{M}(\log N),
$$

where p is the smallest prime factor of N. We can then use ECM to test whether a given integer N is $L_{N}[1 / 2, c]$-smooth in expected time

$$
\begin{aligned}
L_{L_{N}[1 / 2, c]}[1 / 2, \sqrt{2}] & \approx \exp (\sqrt{2 \log (\exp (c \sqrt{\log N \log \log N}) \log \log (\exp (c \sqrt{\log N \log \log N})}) \\
& =L_{N}[1 / 4, \sqrt{c}] .
\end{aligned}
$$

MIT OpenCourseWare
https://ocw.mit.edu

18.783 / 18.7831 Elliptic Curves

Spring 2021

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

