18 Riemann surfaces and modular curves

Let \mathcal{O} be an order in an imaginary quadratic field and let $\operatorname{cl}(\mathcal{O})$ be its ideal class group (proper \mathcal{O}-ideals up to homethety, or equivalently, invertible fractional \mathcal{O}-ideals modulo invertible principal \mathcal{O}-ideals). In the previous lecture we showed that the set

$$
\operatorname{Ell}_{\mathcal{O}}(\mathbb{C}):=\{j(E): E / \mathbb{C} \text { with } \operatorname{End}(E)=\mathcal{O}\}
$$

of isomorphism classes of elliptic curves E / \mathbb{C} with complex multiplication by \mathcal{O} is a torsor for the group $\operatorname{cl}(\mathcal{O})$. If \mathfrak{a} and \mathfrak{b} are proper \mathcal{O}-ideals and $E_{\mathfrak{b}}$ is the elliptic curve corresponding to the complex torus $\mathbb{C} / \mathfrak{b}$, then $E_{\mathfrak{b}}$ has CM by \mathcal{O} and the \mathcal{O}-ideal \mathfrak{a} acts on $E_{\mathfrak{b}}$ via

$$
\mathfrak{a} E_{\mathfrak{b}}=E_{\mathfrak{a}^{-1} \mathfrak{b}} .
$$

The isogeny $\phi_{\mathfrak{a}}: E_{\mathfrak{b}} \rightarrow \mathfrak{a} E_{\mathfrak{b}}$ induced by the lattice inclusion $\mathfrak{b} \subseteq \mathfrak{a}^{-1} \mathfrak{b}$ has kernel

$$
\begin{aligned}
& \operatorname{ker} \phi_{\mathfrak{a}}=E_{\mathfrak{b}}[\mathfrak{a}]:=\left\{P \in E(\mathbb{C}): \alpha P=0 \text { for all } \alpha \in \mathfrak{a} \subseteq \mathcal{O} \simeq \operatorname{End}\left(E_{\mathfrak{b}}\right)\right\}, \\
& \# \operatorname{ker} \phi_{\mathfrak{a}}=\operatorname{deg} \phi_{\mathfrak{a}}=\mathrm{Na}:=[\mathcal{O}: \mathfrak{a}] .
\end{aligned}
$$

To make further progress in our development of the theory of complex multiplication, we need a better understanding of the isogenies $\phi_{\mathfrak{a}}$. The key to doing so, both from a theoretical and practical perspective, is to understand the modular curves that "parameterize" isogenies of elliptic curves (in a sense that will be made clear in later lectures).

In this lecture our goal is simply to introduce the notion of a modular curve, beginning with the canonical example $X(1)$. Modular curves, and the modular functions that comprise their function fields are a major topic in their own right, one to which entire courses are devoted; we shall necessarily only scratch the surface of this rich and beautiful subject. Our presentation is adapted from [1, V.1] and [3, I.2].

18.1 The modular curves $X(1)$ and $Y(1)$

Recall from Lecture 15 that the modular group $\Gamma:=\mathrm{SL}_{2}(\mathbb{Z})$ acts on the upper half plane $\mathbb{H}:=\{\tau \in \mathbb{C}: \operatorname{im} \tau>0\}$ via linear fractional transformations:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \tau:=\frac{a \tau+b}{c \tau+d}
$$

The quotient \mathbb{H} / Γ (the Γ-orbits of \mathbb{H}) is known as the modular curve $Y(1)$, whose points may be identified with points in the fundamental region

$$
\mathcal{F}=\{z \in \mathbb{H}: \operatorname{re}(z) \in[-1 / 2,1 / 2) \text { and }|z| \geq 1, \text { with }|z|>1 \text { if } \operatorname{re}(z)>0\}
$$

You may be wondering why we call $Y(1)$ a curve. Recall from Theorem 15.11 that the j-function defines a holomorphic bijection from \mathcal{F} to \mathbb{C}, and we shall prove that in fact $Y(1)$ is isomorphic, as a complex manifold, to the complex plane \mathbb{C}, which we may view as an affine curve: if we put $f(x, y)=y$ then the zero locus of f is $\{(x, 0): x \in \mathbb{C}\} \simeq \mathbb{C}$.

The fundamental region \mathcal{F} is not a compact subset of \mathbb{H}, since it is unbounded along the positive imaginary axis. To remedy this deficiency, we compactify it by adjoining a point at infinity to \mathbb{H} and including it in \mathcal{F}. We want $\mathrm{SL}_{2}(\mathbb{Z})$ to act on our extended upper half plane, and we want this action to be continuous, as it is on \mathbb{H}. Given that

$$
\lim _{\operatorname{im} \tau \rightarrow \infty} \frac{a \tau+b}{c \tau+d}=\frac{a}{c},
$$

we should also include the set of rational numbers in our extended upper half plane. So let

$$
\mathbb{H}^{*}=\mathbb{H} \cup \mathbb{Q} \cup\{\infty\}=\mathbb{H} \cup \mathbb{P}^{1}(\mathbb{Q}),
$$

and let Γ act on \mathbb{H}^{*} by extending its action on \mathbb{H} to $\mathbb{P}^{1}(\mathbb{Q})$ via

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)(x: y)=(a x+b y: c x+d y) .
$$

The points in $\mathbb{H}^{*}-\mathbb{H}=\mathbb{P}^{1}(\mathbb{Q})$ are called cusps; as you proved on Problem Set 8 , the cusps are all Γ-equivalent. Thus we may extend our fundamental region \mathcal{F} for \mathbb{H} to a fundamental region \mathcal{F}^{*} for \mathbb{H}^{*} by including a single cusp: the point $\infty=(1: 0) \in \mathbb{P}^{1}(\mathbb{Q})$, which we may view as a point lying infinitely far up the positive imaginary axis.

We can now define the modular curve $X(1)=\mathbb{H}^{*} / \Gamma$, which contains all the points in $Y(1)$, plus the cusp at infinity. This is a projective curve, in fact it is the projective closure of $Y(1)$ in \mathbb{P}^{2}. It is also a Riemann surface, a connected complex manifold of dimension one. Before stating precisely what this means, our first goal is to prove that $X(1)$ is a compact Hausdorff space.

We extend the topology of \mathbb{H} to a topology on \mathbb{H}^{*} by taking as a basis of open neighborhoods:

- $\tau \in \mathbb{H}$: all open disks about τ that lie in \mathbb{H};
- $\tau \in \mathbb{Q}$: all sets $\{\tau\} \cup D$, where $D \subseteq \mathbb{H}$ is an open disk tangent to the real line at τ;
- $\tau=\infty$: all sets of the form $\{\tau \in \mathbb{H}: \operatorname{im} \tau>r\}$ for any $r>0$;

The topology of \mathbb{H}^{*} is generated by these open neighborhoods under unions and finite intersections; note that the induced subspace topology on \mathbb{H} is just its standard topology.

It is clear that \mathbb{H}^{*} is a Hausdorff space (any two points can be separated by neighborhoods). It does not immediately follow that $X(1)=\mathbb{H}^{*} / \Gamma$ is a Hausdorff space; a quotient of a Hausdorff space need not be Hausdorff. To show that $X(1)$ is Hausdorff we first prove two lemmas that will be useful in what follows.

Lemma 18.1. For any compact sets $A, B \subseteq \mathbb{H}$ the set $S=\{\gamma \in \Gamma: \gamma A \cap B \neq \emptyset\}$ is finite.
Proof. Recall that for any $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma$ we have

$$
\operatorname{im} \gamma \tau=\operatorname{im} \frac{a \tau+b}{c \tau+d}=\operatorname{im} \frac{(a \tau+b)(c \bar{\tau}+d)}{|c \tau+d|^{2}}=\frac{(a d-b c) \operatorname{im} \tau}{|c \tau+d|^{2}}=\frac{\operatorname{im} \tau}{|c \tau+d|^{2}} .
$$

Now define

$$
r:=\max \left\{\operatorname{im} \tau_{A} / \operatorname{im} \tau_{B}: \tau_{A} \in A, \tau_{B} \in B\right\} .
$$

If $\gamma \tau_{A}=\tau_{B}$ for some $\tau_{A} \in A$ and $\tau_{B} \in B$, then $\left|c \tau_{A}+d\right|^{2}=\operatorname{im} \tau_{A} / \operatorname{im} \tau_{B} \leq r$, which implies upper bounds on $|c|$ and $|d|$ for any $\gamma \in S$. Thus the number of pairs (c, d) arising among $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S$ is finite. Let us now fix one such pair and define

$$
s=\max \left\{\left|\tau_{B} \| c \tau_{A}+d\right|: \tau_{A} \in A, \tau_{B} \in B\right\} .
$$

For any $\gamma=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in \Gamma$ we have $|\gamma \tau|=|a \tau+b| /|c \tau+d|$. If $\gamma \tau_{A}=\tau_{B}$ for some $\tau_{A} \in A$ and $\tau_{B} \in B$, then $\left|a \tau_{A}+b\right|=\left|\tau_{B}\right|\left|c \tau_{A}+d\right| \leq s$, which gives upper bounds on $|a|$ and $|b|$ as above. The number of pairs (a, b) arising among $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S$ is thus finite, hence S is finite.

Lemma 18.2. For any $\tau_{1}, \tau_{2} \in \mathbb{H}^{*}$ there exist open neighborhoods U_{1}, U_{2} of τ_{1}, τ_{2} such that

$$
\gamma U_{1} \cap U_{2} \neq \emptyset \quad \Longleftrightarrow \quad \gamma \tau_{1}=\tau_{2}
$$

for all $\gamma \in \Gamma$. In particular, each $\tau \in \mathbb{H}^{*}$ has an open neighborhood in which it is the sole representative of its Γ-orbit.

Proof. We first note that if $\gamma \tau_{1}=\tau_{2}$, then $\gamma U_{1} \cap U_{2} \neq \emptyset$ for all open neighborhoods U_{1}, U_{2} of τ_{1}, τ_{2}, so we only need to consider γ for which $\gamma \tau_{1} \neq \tau_{2}$.

We first consider $\tau_{1}, \tau_{2} \in \mathbb{H}$ and let $C_{1}, C_{2} \subseteq \mathbb{H}$ be closed disks about them. Let $S\left(C_{1}, C_{2}\right):=\left\{\gamma: \gamma C_{1} \cap C_{2} \neq \emptyset\right.$ and $\left.\gamma \tau_{1} \neq \tau_{2}\right\}$. If S is nonempty, pick $\gamma \in S$, and let U_{3} and U_{2}^{\prime} be disjoint open neighborhoods of $\gamma \tau_{1}$ and τ_{2} respectively (they exist because \mathbb{H} is Hausdorff). Then $\gamma^{-1} U_{3}$ is an open neighborhood of τ_{1} (since γ acts continuously), and it contains a closed disk $C_{1}^{\prime} \subseteq C_{1}$ about τ_{1}, and the open set U_{2}^{\prime} similarly contains a closed disk $C_{2}^{\prime} \subseteq C_{2}$ about τ_{2}. We then have $S\left(C_{1}^{\prime}, C_{2}^{\prime}\right) \subsetneq S\left(C_{1}, C_{2}\right)$, since by construction, $\gamma \notin S\left(C_{1}^{\prime}, C_{2}^{\prime}\right)$. By Lemma 18.1, S is finite, so if we continue in this fashion we will eventually have $S\left(C_{1}, C_{2}\right)=\emptyset$, at which point we may take U_{1}, U_{2} to be the interiors of C_{1}, C_{2}.

We now consider $\tau_{1} \in \mathbb{H}$ and $\tau_{2}=\infty$. Let U_{1} be a neighborhood of τ_{1} with $\bar{U}_{1} \subseteq \mathbb{H}$. The set $\left\{|c \tau+d|: \tau \in U_{1}, c, d \in \mathbb{Z}\right.$ not both 0$\}$ is bounded below, and $\left\{\operatorname{im} \gamma \tau: \gamma \in \Gamma, \tau \in U_{1}\right\}$ is bounded above, say by r, since $\operatorname{im}\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \tau=\operatorname{im} \tau /|c \tau+d|^{2}$. If we let $U_{2}=\{\tau: \operatorname{im} \tau>r\}$ be our neighborhood of $\tau_{2}=\infty$, then $\gamma U_{1} \cap U_{2}=\emptyset$ for all $\gamma \in \Gamma$ and the lemma holds. This argument extends to all the cusps in \mathbb{H}^{*}, since every cusp is Γ-equivalent to ∞, and we can easily reverse the roles of τ_{1} and τ_{2}, since if $\gamma U_{1} \cap U_{2}=\emptyset$ then $U_{1} \cap \gamma^{-1} U_{2}=\emptyset$.

Finally, if $\tau_{1}=\tau_{2}=\infty$ we let $U_{1}=U_{2}=\{\tau \in \mathbb{H}: \operatorname{im} \tau>1\} \cup\{\infty\}:$ for $\operatorname{im} \tau>1$ either $\operatorname{im} \gamma \tau=\operatorname{im} \tau$, in which case $\gamma=\left(\begin{array}{cc}1 & * \\ 0 & 1\end{array}\right)$ fixes ∞, or $\operatorname{im} \gamma \tau=\operatorname{im} \tau /|c \tau+d|^{2}<1$.

Theorem 18.3. $X(1)$ is a connected compact Hausdorff space.
Proof. It is clear that \mathbb{H} is connected, hence its closure \mathbb{H}^{*} is connected, and the quotient of a connected space is connected, so $X(1)$ is connected.

To show that $X(1)$ is compact, we show that every open cover has a finite subcover. Let $\left\{U_{i}\right\}$ be an open cover of $X(1)$ and let $\pi: \mathbb{H}^{*} \rightarrow X(1)$ be the quotient map. Then $\left\{\pi^{-1}\left(U_{i}\right)\right\}$ is an open cover of \mathbb{H}^{*} and it contains an open set V_{0} containing the point ∞. Let $\left\{V_{1}, \ldots, V_{n}\right\}$ be a finite subset of $\left\{\pi^{-1}\left(U_{i}\right)\right\}$ covering the compact set $\overline{\mathcal{F}}-V_{0}$ (note that V_{0} contains a neighborhood $\{z: \operatorname{im} z>r\}$ of $\left.\infty\right)$. Then $\left\{V_{0}, \ldots, V_{n}\right\}$ is a finite cover of \mathcal{F}^{*}, and $\left\{\pi\left(V_{0}\right), \ldots, \pi\left(V_{n}\right)\right\}$ is a finite subcover of $\left\{U_{i}\right\}$.

To show that $X(1)$ is Hausdorff, let $x_{1}, x_{2} \in X(1)$ be distinct, and choose τ_{1}, τ_{2} so that $\pi\left(\tau_{1}\right)=x_{1}$ and $\pi\left(\tau_{2}\right)=x_{2}$. Then $\tau_{2} \neq \gamma \tau_{1}$ for all $\gamma \in \Gamma$ (since $x_{1} \neq x_{2}$), so by Lemma 18.2, there are neighborhoods U_{1} and U_{2} of τ_{1} and τ_{2} respectively for which $\gamma U_{1} \cap U_{2}=\emptyset$ for all $\gamma \in \Gamma$. Thus $\pi\left(U_{1}\right)$ and $\pi\left(U_{2}\right)$ are disjoint neighborhoods of x_{1} and x_{2}.

We note that Lemmas 18.1 and 18.2 and Theorem 18.3 all hold if we replace Γ by any finite-index subgroup of Γ; the proofs are essentially the same, the only difference is an additional argument in the proof of Lemma 18.2 to handle inequivalent cusps.

18.2 Riemann surfaces

Definition 18.4. A complex structure on a topological space X is an open cover $\left\{U_{i}\right\}$ of X together with a set of compatible homeomorphisms ${ }^{1} \psi_{i}: U_{i} \rightarrow \mathbb{C}$ with open images.

[^0]Homeomorphisms ψ_{i} and ψ_{j} are compatible if whenever $U_{i} \cap U_{j} \neq \emptyset$ the transition map

$$
\psi_{j} \circ \psi_{i}^{-1}: \psi_{i}\left(U_{i} \cap U_{j}\right) \rightarrow \psi_{j}\left(U_{i} \cap U_{j}\right)
$$

is holomorphic.
The homeomorphisms ψ_{i} are called charts (or local parameters), and the collection $\left\{\psi_{i}\right\}$ is called an atlas. Each chart ψ_{i} allows us to view a local neighborhood U_{i} of X as a region of the complex plane, and the transition maps allow us to move smoothly from one region to another. Note that transition maps are automatically homeomorphisms; the requirement that they be holomorphic is a stronger condition (this is what differentiates complex manifolds from real manifolds).

Definition 18.5. A Riemann surface is a connected Hausdorff space with a complex structure (equivalently, it is a connected complex manifold of dimension one). ${ }^{2}$

Example 18.6. The torus \mathbb{C} / L corresponding to an elliptic curve E / \mathbb{C} is a Riemann surface. To give \mathbb{C} / L a complex structure let $\pi: \mathbb{C} \rightarrow \mathbb{C} / L$ be the quotient map, let $r>0$ be less than half the length of the shortest vector in L, and for each $z \in \mathbb{C}$ in a fundamental region for L, let $U_{z} \subseteq \mathbb{C}$ be the open disc or radius r centered at z. The restriction of π to each U_{z} is injective (by our choice of r) and defines a homeomorphism. We may thus take $\left\{\pi\left(U_{z}\right)\right\}$ as our open cover and the inverse maps $\pi^{-1}: \pi\left(U_{z}\right) \rightarrow U_{z}$ as our charts. The transition maps are all the identity map, hence holomorphic.

It is clear that \mathbb{C} / L is a connected Hausdorff space, hence a Riemann surface, in fact a compact Riemann surface. We can compute its genus by triangulating a fundamental parallelogram and computing its Euler characteristic. Recall Euler's formula

$$
V-E+F=2-2 g
$$

where V counts vertices, E counts edges, F counts faces, and g is the genus. If $L=\left[\omega_{1}, \omega_{2}\right]$, we may triangulate the parallelogram $\overline{\mathcal{F}_{0}}$ by drawing a diagonal from ω_{1} to ω_{2}. We then have $V=1$ (every lattice point is equivalent to 0), $E=3$ (edges on the opposite side of the parallelogram are equivalent, so 2 edges on the border plus the diagonal), and $F=2$ (two triangles, one on each side of the diagonal). We thus have

$$
1-3+2=2-2 g,
$$

and $g=1$, as expected.
In order to show that $X(1)$ is a Riemann surface, we need to give it a complex structure. The only difficulty that arises when doing so occurs at points in \mathbb{H}^{*} that possess extra symmetries under the action of Γ. We may restrict our attention to the fundamental region \mathcal{F}^{*}, and in this region there are only three points that we need to worry about, the points $i, \rho:=e^{2 \pi i / 3}$, and ∞. We require the following lemma.

[^1]

Figure 1: \mathbb{H}^{*} / Γ
Lemma 18.7. For $\tau \in \mathcal{F}^{*}$, let G_{τ} denote the stabilizer of τ in $\Gamma=\mathrm{SL}_{2}(\mathbb{Z})$. Let $S=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ and $T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$. Then

$$
G_{\tau}= \begin{cases}\{ \pm I\} \simeq \mathbb{Z} / 2 \mathbb{Z} & \\ \text { if } \tau \notin\{i, \rho, \infty\} \\ \langle S\rangle \simeq \mathbb{Z} / 4 \mathbb{Z} & \\ \text { if } \tau=i ; \\ \langle S T\rangle \simeq \mathbb{Z} / 6 \mathbb{Z} & \\ \text { if } \tau=\rho \\ \langle \pm T\rangle \simeq \mathbb{Z} & \\ \text { if } \tau=\infty .\end{cases}
$$

Proof. See Problem Set 8, or stare at Figure 1 and note $-I$ acts trivially and $T \infty=\infty$.

18.3 The modular curve $X(1)$ as a Riemann surface

We now put a complex structure on $X(1)$. Let $\pi: \mathbb{H}^{*} \rightarrow X(1)$ be the quotient map, and for each point $x \in X(1)$ let τ_{x} be the unique point in the fundamental region \mathcal{F}^{*} for which $\pi\left(\tau_{x}\right)=x$, and let $G_{x}=G_{\tau_{x}}$ be the stabilizer of τ_{x}. For each $\tau_{x} \in \mathcal{F}^{*}$, we can pick a neighborhood U_{x} such that $\gamma U_{x} \cap U_{x}=\emptyset$ for all $\gamma \notin G_{x}$, by Lemma 18.2. The sets $\pi\left(U_{x}\right)$ form an open cover of $X(1)$. For $x \neq \infty$, we can map U_{x} to an open subset of the unit disk $\mathbb{D}:=\{z \in \mathbb{C}:|z|<1\}$ via the homeomorphism $\delta_{x}: \mathbb{H} \rightarrow \mathbb{D}$ defined by

$$
\begin{equation*}
\delta_{x}(\tau):=\frac{\tau-\tau_{x}}{\tau-\bar{\tau}_{x}} . \tag{1}
\end{equation*}
$$

To visualize the map δ_{x}, note that it sends τ_{x} to the origin, and if we extend its domain to $\overline{\mathbb{H}} \subseteq \mathbb{C}$, it maps the real line to the unit circle minus the point 1 and sends ∞ to 1 . Note that $\operatorname{im} \tau>0$ and $\operatorname{im} \bar{\tau}_{x}<0$, so $\delta_{x}(\tau)$ is defined and nonzero for all $\tau \in \mathbb{H}$.

To define ψ_{x} we need to map $\pi\left(U_{x}\right)$ into \mathbb{D}. For $\tau_{x} \neq i, \rho, \infty$ we have $G_{x}=\{ \pm 1\}$, which fixes every point in U_{x}, not just τ_{x}. In this case the restriction of π to U_{x} is injective, we have $U_{x} / \Gamma=U_{x} / G_{x}=U_{x}$, so we can simply define $\psi_{x}:=\delta_{x} \circ \pi^{-1}$.

When $\left|G_{x}\right|>2$, the restriction of π to U_{x} is no longer injective (it is at τ_{x}, but not at points near τ_{x}), so we cannot use $\psi_{x}=\delta_{x} \circ \pi^{-1}$. We instead define $\psi_{x}(z)=\delta_{x}\left(\pi^{-1}(z)\right)^{n}$, where $n=\left|G_{x}\right| / 2$ is the size of the Γ-orbits in $U_{x} \backslash\left\{\tau_{x}\right\}$. Note that when $G_{x}=\{ \pm 1\}$ we have $n=1$ and this is the same as defining $\psi_{x}=\delta_{x} \circ \pi^{-1}$. To prove that this actually works, we will need the following lemma.

Lemma 18.8. Let $\tau_{x} \in \mathbb{H}$, with $\delta_{x}(\tau)$ as in (1), and let $\varphi: \mathbb{H} \rightarrow \mathbb{H}$ be a holomorphic function fixing τ_{x} whose n-fold composition with itself is the identity, with n minimal. Then for some primitive nth root of unity ζ, we have $\delta_{x}(\varphi(\tau))=\zeta \delta_{x}(\tau)$ for all $\tau \in \mathbb{H}$.

Proof. The map $f=\delta_{x} \circ \varphi \circ \delta_{x}^{-1}$ is a holomorphic bijection (conformal map) from \mathbb{D} to \mathbb{D} that fixes 0 . Every such function is a rotation $f(z)=\zeta z$ with $|\zeta|=1$, by [4, Cor. 8.2.3]. Since the n-fold composition of f with itself is the identity map, with n minimal, ζ must be a primitive nth root of unity.

What about $x=\infty$? We have $G_{\infty}=\langle \pm T\rangle$, so the intersection of the Γ-orbit of any point $\tau \in U_{\infty} \backslash\{\infty\}$ with U_{∞} is the set $\{\tau+m: m \in \mathbb{Z}\}$. We now define

$$
\delta_{\infty}(z):= \begin{cases}e^{2 \pi i z} & \text { if } z \neq \infty \\ 0 & \text { if } z=\infty\end{cases}
$$

and let $\psi_{\infty}=\delta_{\infty} \circ \pi^{-1}$. Then $\delta_{\infty}(\tau+m)=\delta_{\infty}(\tau)$ for all $\tau \in U_{\infty} \backslash\{\infty\}$ and $m \in \mathbb{Z}$.
The following commutative diagrams summarize the charts ψ_{x} :

$$
\begin{gathered}
x \neq \infty, \delta_{x}(\tau)=\frac{\tau-\tau_{x}}{\tau-\bar{\tau}_{x}} \\
n=\left|G_{x}\right| / 2
\end{gathered}
$$

We are now ready to prove that $X(1)$ is a compact Riemann surface. Theorem 18.3 states that $X(1)$ is a connected compact Hausdorff space, so we just need to prove that we have a complex structure on $X(1)$. This means verifying that the maps $\psi_{x}: \pi\left(U_{x}\right) \rightarrow \mathbb{D}$ are well-defined (we must have $\psi(\pi(\gamma \tau))=\psi(\pi(\tau))$ for all $\tau \in U_{x}$ and $\gamma \in G_{x}$), that they are homeomorphisms, and that the transition maps are holomorphic.
Theorem 18.9. The open cover $\left\{U_{x}\right\}$ and atlas $\left\{\psi_{x}\right\}$ define a complex structure on $X(1)$.
Proof. As above, let $x=\pi\left(\tau_{x}\right)$ with $\tau_{x} \in \mathcal{F}^{*}$. We first verify that the maps ψ_{x} are welldefined homeomorphisms.

We first consider $x \neq \infty$. By Lemma 18.7, the stabilizer G_{x} of τ_{x} is cyclic of order $2 n$, and $\gamma^{n}= \pm 1$ acts trivially for all $\gamma \in G_{x}$. Applying Lemma 18.8 to the function $\varphi(\tau)=\gamma \tau$, we have $\delta_{x}(\gamma z)=\zeta \delta_{x}(z)$ for all $z \in U_{x}$, where ζ is a primitive nth root of unity. Thus

$$
\psi_{x}(\pi(\gamma z))=\delta_{x}(\gamma z)^{n}=\zeta^{n} \delta_{x}(z)^{n}=\delta_{x}(z)^{n}=\psi_{x}(\pi(z))
$$

for all $z \in U_{x}$. It follows that ψ_{x} is well defined on U_{x} / G_{x}. To show that ψ_{x} is a homeomorphism, it suffices to show that it is holomorphic and injective, by the open mapping theorem [4, Thm. 5.5.4]. It is clearly holomorphic, since $\delta_{x}(\tau)$ is a rational function with no poles in U_{x}. To prove injectivity, assume $\psi_{x}\left(\pi\left(\tau_{1}\right)\right)=\psi_{x}\left(\pi\left(\tau_{2}\right)\right)$. Then for some integer k

$$
\begin{aligned}
\delta_{x}\left(\tau_{1}\right)^{n} & =\delta_{x}\left(\tau_{2}\right)^{n} \\
\delta_{x}\left(\tau_{1}\right) & =\zeta^{k} \delta_{x}\left(\tau_{2}\right)=\delta_{x}\left(\gamma^{k} \tau_{2}\right) \\
\tau_{1} & =\gamma^{k} \tau_{2} \\
\pi\left(\tau_{1}\right) & =\pi\left(\tau_{2}\right) .
\end{aligned}
$$

Thus ψ_{x} is an injective and therefore a homeomorphism.
For $x=\infty$, the point $\tau=\infty \in \mathbb{H}^{*}$ is the unique point in U_{∞} for which $\pi(\tau)=\infty$, and $\psi_{x}(\tau)=0$ if and only if $\tau=\infty$. So ψ_{∞} is well defined at ∞. For $\tau \in U_{\infty} \backslash\{\infty\}$, we have

$$
\psi_{\infty}(\pi(\tau+m))=\delta_{\infty}(\tau+m)=e^{2 \pi i(\tau+m)}=e^{2 \pi i \tau}=\delta_{\infty}(\tau)=\psi_{\infty}(\pi(\tau))
$$

for all $m \in \mathbb{Z}$, thus ψ_{∞} is well defined. The map ψ_{∞} is clearly continuous, and it has a continuous inverse

$$
\psi_{\infty}^{-1}(z)= \begin{cases}\pi\left(\frac{1}{2 \pi i} \log z\right) & \text { if } z \neq 0 \\ \infty & \text { otherwise }\end{cases}
$$

thus it is a homeomorphism.
We now show that the transition maps are holomorphic. Let us first consider U_{x}, U_{y} with $x, y \neq \infty$. For any $z \in \psi_{x}\left(\pi\left(U_{x}\right) \cap \pi\left(U_{y}\right)\right) \subseteq \mathbb{D}$ we have

$$
\psi_{y} \circ \psi_{x}^{-1}(z)=\psi_{y} \circ \pi \circ \pi^{-1} \circ \psi_{x}^{-1}(z)=\left(\psi_{y} \circ \pi\right) \circ\left(\psi_{x} \circ \pi\right)^{-1}(z)=\delta_{y}^{n_{y}} \circ \delta_{x}^{-1}\left(z^{1 / n_{x}}\right),
$$

where $n_{x}=\left|G_{x}\right| / 2$ and $n_{y}=\left|G_{y}\right| / 2$. The map $\delta_{y}^{n_{y}} \circ \delta_{x}^{-1}$ is holomorphic on \mathbb{D}, so it suffices to show that it is a power series in $z^{n_{x}}$; this will imply that $\delta_{y}^{n_{y}} \circ \delta_{x}^{-1}\left(z^{1 / n_{z}}\right)$ is defined by a power series in z, hence holomorphic. Let ζ be an n_{x} th root of unity such that $\delta_{x}(\gamma z)=\zeta \delta_{x}(z)$, where γ generates G_{x}, as in Lemma 18.8. Note that $\pi \circ \gamma=\pi$ for any $\gamma \in \Gamma$, so we have

$$
\delta_{y}^{n_{y}} \circ \delta_{x}^{-1}(\zeta z)=\left(\psi_{y} \circ \pi\right) \circ\left(\gamma \circ \delta_{x}^{-1}(z)\right)=\psi_{y} \circ \pi \circ \delta_{x}^{-1}(z)=\delta_{y}^{n_{y}} \circ \delta_{x}^{-1}(z) .
$$

It follows that $\delta_{y}^{n_{y}} \circ \delta_{x}^{-1}$ is a power series in $z^{n_{x}}$, since it maps ζz and z to the same point.
For $x \neq \infty$ and $y=\infty$ we have

$$
\begin{aligned}
\psi_{\infty} \circ \psi_{x}^{-1}(z) & =\psi_{y} \circ \pi \circ \pi^{-1} \circ \psi_{x}^{-1}(z)=\left(\psi_{y} \circ \pi\right) \circ\left(\psi_{x} \circ \pi\right)^{-1}(z) \\
& =\delta_{\infty} \circ \delta_{x}^{-1}\left(z^{1 / n_{x}}\right)=\exp \left(2 \pi i \delta_{x}^{-1}\left(z^{1 / n_{x}}\right)\right)
\end{aligned}
$$

where $\delta_{\infty} \circ \delta_{x}^{-1}$ is holomorphic. and the same argument used above shows that it is actually a power series in $z^{n_{x}}$.

For the case $x=\infty$ and $y \neq \infty$, we have

$$
\delta_{y}^{n_{y}}(z+1)=\psi_{y} \circ \pi \circ T z=\psi_{y} \circ \pi(z)=\delta_{y}^{n_{y}}(z),
$$

so $\delta_{y}^{n_{y}}$ is a holomorphic function in the variable $q=e^{2 \pi i z}$ (note $z \in U_{\infty} \cap U_{y}$ is bounded). Thus the transition map

$$
\psi_{y} \circ \psi_{\infty}^{-1}(z)=\delta_{y}^{n_{y}}\left(\frac{1}{2 \pi i} \log z\right)
$$

is holomorphic. The case $x=y=\infty$ is trivial, since $\psi_{\infty} \circ \psi_{\infty}^{-1}$ is the identity map.

Theorem 18.10. The modular curve $X(1)$ is a compact Riemann surface of genus 0 .
Proof. That $X(1)$ is a compact Riemann surface follows immediately from Theorems 18.3 and 18.9. To show that it has genus 0 , we triangulate $X(1)$ by connecting the points i, ρ, and ∞, partitioning the surface into two triangles. Applying Euler's formula

$$
V-E+F=2-2 g
$$

with $V=3, E=3$, and $F=2$, we see that $g=0$.
Theorem 18.10 implies that $X(1)$ is homeomorphic to the Riemann sphere $S=\mathbb{P}^{1}(\mathbb{C})$, since up to homeomorphism, S is the unique compact Riemann surface of genus 0 . The modular curve $Y(1)$ is also a Riemann surface of genus 0 , but it is not compact. As we saw in Lecture $17, Y(1)$ is homeomorphic to the complex plane \mathbb{C} via the j-function.

18.4 Modular curves

We also wish to consider modular curves defined as quotients \mathbb{H}^{*} / Γ for various finite index subgroups Γ of $\mathrm{SL}_{2}(\mathbb{Z})$ that have desirable arithmetic properties.

Definition 18.11. The principal congruence subgroup $\Gamma(N)$ is defined by

$$
\Gamma(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}):\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \bmod N\right\}
$$

A congruence subgroup (of level N) is any subgroup of $\mathrm{SL}_{2}(\mathbb{Z})$ that contains $\Gamma(N)$. A modular curve is a quotient of \mathbb{H}^{*} or \mathbb{H} by a congruence subgroup.

Remark 18.12. Every congruence subgroup is a finite index subgroup of $\mathrm{SL}_{2}(\mathbb{Z})$. The converse does not hold; in fact, most finite index subgroups of $\mathrm{SL}_{2}(\mathbb{Z})$ are not congruence subgroups, although it is surprisingly difficult to write down explicit examples (you will have the opportunity to explore this question in Problem Set 10).

There are two families of congruence subgroups of particular interest:

$$
\begin{aligned}
& \Gamma_{1}(N):=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}):\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right) \bmod N\right\} \\
& \Gamma_{0}(N):=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}):\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{ll}
* & * \\
0 & *
\end{array}\right) \bmod N\right\}
\end{aligned}
$$

Note that $\Gamma(1)=\Gamma_{1}(1)=\Gamma_{0}(1)=\mathrm{SL}_{2}(\mathbb{Z})$. We now define the modular curves

$$
X(N):=\mathbb{H}^{*} / \Gamma(N), \quad X_{1}(N):=\mathbb{H}^{*} / \Gamma_{1}(N), \quad X_{0}(N):=\mathbb{H}^{*} / \Gamma_{0}(N)
$$

and similarly define

$$
Y(N):=\mathbb{H} / \Gamma(N), \quad Y_{1}(N):=\mathbb{H} / \Gamma_{1}(N), \quad Y_{0}(N):=\mathbb{H} / \Gamma_{0}(N)
$$

Following the same strategy we used for $X(1)$, one can show that these are all compact Riemann surfaces (the only difference in the proof is that in general a fundamental region may contain multiple cusps, we only had to consider the cusp ∞).

References

[1] J. S. Milne, Elliptic curves, BookSurge Publishers, 2006.
[2] Rick Miranda, Algebraic curves and Riemann surfaces, American Mathematical Society, 1995.
[3] Joseph H. Silverman, Advanced topics in the the arithmetic of elliptic curves, Springer, 1994.
[4] Elias M. Stein and Rami Shakarchi, Complex analysis, Princeton University Press, 2003.

MIT OpenCourseWare
https://ocw.mit.edu
18.783 / 18.7831 Elliptic Curves

Spring 2021

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ Recall that a homeomorphism is a bicontinuous function, a continuous function with a continuous inverse.

[^1]: ${ }^{2}$ Strictly speaking, a Riemann surface is also required to be second-countable, meaning that it admits a countable basis of open sets. This is easily satisfied by all the Riemann surfaces that we shall consider (to get a countable basis for \mathbb{H} take open discs of rational radii centered at points with rational real and imaginary parts; this easily extends to a countable basis for \mathbb{H}^{*} and any quotient thereof).

