15 Elliptic curves over \mathbb{C} (part 2)

Last time we showed that every lattice $L \subseteq \mathbb{C}$ gives rise to an elliptic curve

$$
E_{L}: y^{2}=4 x^{3}-g_{2}(L) x-g_{3}(L),
$$

where

$$
g_{2}(L)=60 G_{4}(L):=60 \sum_{L^{*}} \frac{1}{\omega^{4}}, \quad g_{3}(L)=140 G_{6}(L)=140 \sum_{L^{*}} \frac{1}{\omega^{6}},
$$

with $L^{*}:=L-\{0\}$, and we defined a map

$$
\begin{aligned}
\Phi: \mathbb{C} / L & \rightarrow E_{L}(\mathbb{C}) \\
z & \mapsto \begin{cases}\left(\wp(z), \wp^{\prime}(z)\right) & z \notin L \\
0 & z \in L\end{cases}
\end{aligned}
$$

where

$$
\wp(z)=\wp(z ; L)=\frac{1}{z^{2}}+\sum_{\omega \in L^{*}}\left(\frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}}\right)
$$

is the Weierstrass \wp-function for the lattice L, and

$$
\wp^{\prime}(z)=-2 \sum_{\omega \in L} \frac{1}{(z-\omega)^{3}} .
$$

In this lecture we will prove two theorems. First we will prove that Φ is an isomorphism of additive groups; it is also an isomorphism of complex manifolds [3, Cor.5.1.1], and of complex Lie groups, but we won't prove this right now. ${ }^{1}$ Second, we will prove that every elliptic curve E / \mathbb{C} is isomorphic to E_{L} for some lattice L; this is the Uniformization Theorem.

15.1 The isomorphism from a torus to the corresponding elliptic curve

Theorem 15.1. Let $L \subseteq \mathbb{C}$ be a lattice and let $E_{L}: y^{2}=4 x^{3}-g_{2}(L) x-g_{3}(L)$ be the corresponding elliptic curve. The map $\Phi: \mathbb{C} / L \rightarrow E_{L}(\mathbb{C})$ is a group isomorphism.

Proof. We first note that $\Phi(0)=0$, so Φ preserves the identity, and for all $z \notin L$ we have

$$
\Phi(-z)=\left(\wp(-z), \wp^{\prime}(-z)\right)=\left(\wp(z),-\wp^{\prime}(z)\right)=-\Phi(z),
$$

since \wp is even and \wp^{\prime} is odd, so Φ is compatible with taking inverses.
Let $L=\left[\omega_{1}, \omega_{2}\right]$. There are three points of order 2 in \mathbb{C} / L; if $L=\left[\omega_{1}, \omega_{2}\right]$ these are $\omega_{1} / 2, \omega_{2} / 2$, and $\left(\omega_{1}+\omega_{2}\right) / 2$. By Lemma 14.31, \wp^{\prime} vanishes these points, hence Φ maps points of order 2 in \mathbb{C} / L to points of order 2 in $E_{L}(\mathbb{C})$, since the latter are the points with y-coordinate zero. Moreover, Φ is injective on points of order 2 , since $\wp(z)$ maps each point of order 2 in \mathbb{C} / L to a distinct root of $4 \wp(z)^{3}-g_{2}(L) \wp(z)-g_{3}(L)$, as shown in the proof of Lemma 14.33. The restriction of Φ to $(\mathbb{C} / L)[2]$ defines a bijection of $(\mathbb{C} / L)[2] \xrightarrow{\sim} E_{L}[2] \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$ with $\Phi(0)=0$, which must be a group isomorphism.

[^0]To show that Φ is surjective, let $\left(x_{0}, y_{0}\right) \in E_{L}(\mathbb{C})$. The elliptic function $f(z)=\wp(z)-x_{0}$ has order 2 , hence it has two zeros in the fundamental parallelogram \mathcal{F}_{0}, by Theorem 14.18. Neither of these zeros occurs at $z=0$, since f has a pole at 0 . So let $z_{0} \neq 0$ be a zero of $f(z)$ in \mathcal{F}_{0}. Then $\wp\left(z_{0}\right)=x_{0}$, which implies $\Phi\left(z_{0}\right)=\left(x_{0}, \pm y_{0}\right)$ and therefore $\left(x_{0}, y_{0}\right)=\Phi\left(\pm z_{0}\right)$; thus Φ is surjective.

We now show that Φ is injective. Let $z_{1}, z_{2} \in \mathcal{F}_{0}$ and suppose that $\Phi\left(z_{1}\right)=\Phi\left(z_{2}\right)$. If $2 z_{1} \in L$ then z_{1} is a 2 -torsion element and we have already shown that Φ restricts to a bijection on $(\mathbb{C} / L)[2]$, so we must have $z_{1}=z_{2}$. We now assume $2 z_{1} \notin L$, which implies $\wp^{\prime}\left(z_{1}\right) \neq 0$. As argued above, the roots of $f(z)=\wp(z)-\wp\left(z_{1}\right)$ in \mathcal{F}_{0} are $\pm z_{1}$, thus $z_{2} \equiv \pm z_{1} \bmod L$. We also have $\wp^{\prime}\left(z_{1}\right)=\wp^{\prime}\left(z_{2}\right)$, and this forces $z_{2} \equiv z_{1} \bmod L$, since $\wp^{\prime}\left(-z_{1}\right)=-\wp^{\prime}\left(z_{1}\right) \neq \wp^{\prime}\left(z_{1}\right)$ because $\wp^{\prime}\left(z_{1}\right) \neq 0$.

It remains only to show that $\Phi\left(z_{1}+z_{2}\right)=\Phi\left(z_{1}\right)+\Phi\left(z_{2}\right)$. So let $z_{1}, z_{2} \in \mathcal{F}_{0}$; we may assume that $z_{1}, z_{2}, z_{1}+z_{2} \notin L$ since the case where either z_{1} or z_{2} lies in L is immediate, and if $z_{1}+z_{2} \in L$ then z_{1} and z_{2} are inverses modulo L, a case treated above.

The points $P_{1}=\Phi\left(z_{1}\right)$ and $P_{2}=\Phi\left(z_{2}\right)$ are affine points in $E_{L}(\mathbb{C})$, and the line ℓ between them cannot be vertical because P_{1} and P_{2} are not inverses (since z_{1} and z_{2} are not). So let $y=m x+b$ be an equation for this line, and let P_{3} be the third point where the line intersects the curve E_{L}. Then $P_{1}+P_{2}+P_{3}=0$, by the definition of the group law on $E_{L}(\mathbb{C})$.

Now consider the function $\ell(z)=-\wp^{\prime}(z)+m \wp(z)+b$. It is an elliptic function of order 3 with a triple pole at 0 , so it has three zeros in the fundamental region \mathcal{F}_{0}, two of which are z_{1} and z_{2}. Let z_{3} be the third zero in \mathcal{F}_{0}. The point $\Phi\left(z_{3}\right)$ lies on both the line ℓ and the elliptic curve $E_{L}(C)$, hence it must lie in $\left\{P_{1}, P_{2}, P_{3}\right\}$; moreover, we have a bijection from $\left\{z_{1}, z_{2}, z_{3}\right\}$ to $\left\{\Phi\left(z_{1}\right), \Phi\left(z_{2}\right), \Phi\left(z_{3}\right)\right\}=\left\{P_{1}, P_{2}, P_{3}\right\}$, and this bijection must send z_{3} to P_{3} if P_{3} is distinct from P_{1} and P_{2}. If P_{3} coincides with exactly one of P_{1} or P_{2}, say P_{1}, then $\ell(z)$ has a double zero at z_{1} and we must have $z_{3}=z_{1}$; and if $P_{1}=P_{2}=P_{3}$ then clearly $z_{1}=z_{2}=z_{3}$. Thus in every case we must have $P_{3}=\Phi\left(z_{3}\right)$.

We have $P_{1}+P_{2}+P_{3}=0$, so it suffices to show $z_{1}+z_{2}+z_{3} \in L$, since this implies

$$
\Phi\left(z_{1}+z_{2}\right)=\Phi\left(-z_{3}\right)=-\Phi\left(z_{3}\right)=-P_{3}=P_{1}+P_{2}=\Phi\left(z_{1}\right)+\Phi\left(z_{2}\right) .
$$

Let \mathcal{F}_{α} be a fundamental region for L whose boundary does not contain any zeros or poles of $\ell(z)$ and replace z_{1}, z_{2}, z_{3} by equivalent points in \mathcal{F}_{α} if necessary.

Applying Theorem 14.17 to $g(z)=z$ and $f(z)=\ell(z)$ yields

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{\partial \mathcal{F}_{\alpha}} z \frac{\ell^{\prime}(z)}{\ell(z)} d z=\sum_{w \in F_{\alpha}} \operatorname{ord}_{w}(\ell) w=z_{1}+z_{2}+z_{3}-3 \cdot 0=z_{1}+z_{2}+z_{3} \tag{1}
\end{equation*}
$$

where the boundary $\partial \mathcal{F}_{\alpha}$ of \mathcal{F}_{α} is oriented counter-clockwise.
Let us now evaluate the integral in (1); to ease the notation, define $f(z):=\ell^{\prime}(z) / \ell(z)$, which we note is an elliptic function (hence periodic with respect to L). We then have

$$
\begin{align*}
\int_{\partial F_{\alpha}} z f(z) d z & =\int_{\alpha}^{\alpha+\omega_{1}} z f(z) d z+\int_{\alpha+\omega_{1}}^{\alpha+\omega_{1}+\omega_{2}} z f(z) d z+\int_{\alpha+\omega_{1}+\omega_{2}}^{\alpha+\omega_{2}} z f(z) d z+\int_{\alpha+\omega_{2}}^{\alpha} z f(z) d z \\
& =\int_{\alpha}^{\alpha+\omega_{1}} z f(z) d z+\int_{\alpha}^{\alpha+\omega_{2}}\left(z+\omega_{1}\right) f(z) d z+\int_{\alpha+\omega_{1}}^{\alpha}\left(z+\omega_{2}\right) f(z) d z+\int_{\alpha+\omega_{2}}^{\alpha} z f(z) d z \\
& =\omega_{1} \int_{\alpha}^{\alpha+\omega_{2}} f(z) d z+\omega_{2} \int_{\alpha+\omega_{1}}^{\alpha} f(z) d z \tag{2}
\end{align*}
$$

Note that we have used the periodicity of $f(z)$ to replace $f\left(z+\omega_{i}\right)$ by $f(z)$, and to cancel integrals in opposite directions along lines that are equivalent modulo L.

For any closed (not necessarily simple) curve C and a point $z_{0} \notin C$, the quantity

$$
\frac{1}{2 \pi i} \int_{C} \frac{d z}{z-z_{0}}
$$

is the winding number of C about z_{0}, and it is an integer (it counts the number of times the curve C "winds around" the point z_{0}); see [1, Lem. 4.2.1] or [4, Lem. B.1.3].

The function $\ell\left(\alpha+t \omega_{2}\right)$ parametrizes a closed curve C_{1} from $\ell(\alpha)$ to $\ell\left(\alpha+\omega_{2}\right)=\ell(\alpha)$, as t ranges from 0 to 1 . The winding number of C_{1} about the point 0 is the integer

$$
\begin{equation*}
c_{1}:=\frac{1}{2 \pi i} \int_{C_{1}} \frac{d z}{z-0}=\frac{1}{2 \pi i} \int_{0}^{1} \frac{\ell^{\prime}\left(\alpha+t \omega_{2}\right)}{\ell\left(\alpha+t \omega_{2}\right)} \omega_{2} d t=\frac{1}{2 \pi i} \int_{\alpha}^{\alpha+w_{2}} \frac{\ell^{\prime}(z)}{\ell(z)} d z=\frac{1}{2 \pi i} \int_{\alpha}^{\alpha+\omega_{2}} f(z) d z . \tag{3}
\end{equation*}
$$

Similarly, the function $\ell\left(\alpha+t \omega_{1}\right)$ parameterizes a closed curve C_{2} from $\ell(\alpha)$ to $\ell\left(\alpha+\omega_{1}\right)$, and we obtain the integer

$$
\begin{equation*}
c_{2}:=\frac{1}{2 \pi i} \int_{C_{2}} \frac{d z}{z-0}=\frac{1}{2 \pi i} \int_{0}^{1} \frac{\ell^{\prime}\left(\alpha+t \omega_{1}\right)}{\ell\left(\alpha+t \omega_{1}\right)} \omega_{1} d t=\frac{1}{2 \pi i} \int_{\alpha}^{\alpha+\omega_{1}} \frac{\ell^{\prime}(z)}{\ell(z)} d z=\frac{1}{2 \pi i} \int_{\alpha}^{\alpha+\omega_{1}} f(z) d z . \tag{4}
\end{equation*}
$$

Plugging (3), and (4) into (2), and applying (1), we see that

$$
z_{1}+z_{2}+z_{3}=c_{1} \omega_{1}-c_{2} \omega_{2} \in L
$$

as desired.

15.2 The j-invariant of a lattice

Definition 15.2. The j-invariant of a lattice L is defined by

$$
j(L)=1728 \frac{g_{2}(L)^{3}}{\Delta(L)}=1728 \frac{g_{2}(L)^{3}}{g_{2}(L)^{3}-27 g_{3}(L)^{2}} .
$$

Recall that $\Delta(L) \neq 0$, by Lemma 14.33 , so $j(L)$ is always defined.
The elliptic curve $E_{L}: y^{2}=4 x^{3}-g_{2}(L) x-g_{3}(L)$ is isomorphic to the elliptic curve $y^{2}=x^{3}+A x+B$, where $g_{2}(L)=-4 A$ and $g_{3}(L)=-4 B$. Thus

$$
j(L)=1728 \frac{g_{2}(L)^{3}}{g_{2}(L)^{3}-27 g_{3}(L)^{2}}=1728 \frac{(-4 A)^{3}}{(-4 A)^{3}-27(-4 B)^{2}}=1728 \frac{4 A^{3}}{4 A^{3}+27 B^{2}}=j\left(E_{L}\right) .
$$

Thus the j-invariant of a lattice L is the same as the j-invariant of the corresponding elliptic curve E_{L}. We now define the discriminant of an elliptic curve so that it agrees with the discriminant of the corresponding lattice.
Definition 15.3. The discriminant of an elliptic curve $E: y^{2}=x^{3}+A x+B$ is

$$
\Delta(E)=-16\left(4 A^{3}+27 B^{2}\right) .
$$

This definition applies to any elliptic curve E / k defined by a short Weierstrass equation, whether $k=\mathbb{C}$ or not, but for the moment we continue to focus on elliptic curves over \mathbb{C}.

Recall from Theorem 13.14 that elliptic curves E / k and E^{\prime} / k are isomorphic over \bar{k} if and only if $j(E)=j\left(E^{\prime}\right)$. Thus over an algebraically closed field like \mathbb{C}, the j-invariant characterizes elliptic curves up to isomorphism. We now define an analogous notion of isomorphism for lattices.

Definition 15.4. Lattices L and L^{\prime} are said to be homothetic if $L^{\prime}=\lambda L$ for some $\lambda \in \mathbb{C}^{\times}$.
Theorem 15.5. Two lattices L and L^{\prime} are homothetic if and only if $j(L)=j\left(L^{\prime}\right)$.
Proof. Suppose L and L^{\prime} are homothetic, with $L^{\prime}=\lambda L$. Then

$$
g_{2}\left(L^{\prime}\right)=60 \sum_{\omega \in L^{\prime *}} \frac{1}{w^{4}}=60 \sum_{\omega \in L^{*}} \frac{1}{(\lambda \omega)^{4}}=\lambda^{-4} g_{2}(L)
$$

Similarly, $g_{3}\left(L^{\prime}\right)=\lambda^{-6} g_{3} L$, and we have

$$
j\left(L^{\prime}\right)=1728 \frac{\left(\lambda^{-4} g_{2}(L)\right)^{3}}{\left(\lambda^{-4} g_{2}(L)\right)^{3}-27\left(\lambda^{-6} g_{3}(L)\right)^{2}}=1728 \frac{g_{2}(L)^{3}}{g_{2}(L)^{3}-27 g_{3}(L)^{2}}=j(L)
$$

To show the converse, let us now assume $j(L)=j\left(L^{\prime}\right)$. Let E_{L} and $E_{L^{\prime}}$ be the corresponding elliptic curves. Then $j\left(E_{L}\right)=j\left(E_{L^{\prime}}\right)$. We may write

$$
E_{L}: y^{2}=x^{3}+A x+B,
$$

with $-4 A=g_{2}(L)$ and $-4 B=g_{3}(L)$, and similarly for $E_{L^{\prime}}$, with $-4 A^{\prime}=g_{2}\left(L^{\prime}\right)$ and $-4 B^{\prime}=g_{3}\left(L^{\prime}\right)$. By Theorem 13.13 , there is a $\mu \in \mathbb{C}^{\times}$such that $A^{\prime}=\mu^{4} A$ and $B^{\prime}=\mu^{6} B$, and if we let $\lambda=1 / \mu$, then $g_{2}\left(L^{\prime}\right)=\lambda^{-4} g_{2}(L)=g_{2}(\lambda L)$ and $g_{3}\left(L^{\prime}\right)=\lambda^{-6} g_{3}(L)=g_{3}(\lambda L)$, as above. We now show that this implies $L^{\prime}=\lambda L$.

Recall from Theorem 14.29 that the Weierstrass \wp-function satisfies

$$
\wp^{\prime}(z)^{2}=4 \wp(z)^{3}-g_{2} \wp(z)-g_{3} .
$$

Differentiating both sides yields

$$
\begin{align*}
2 \wp^{\prime}(z) \wp^{\prime \prime}(z) & =12 \wp(z)^{2} \wp^{\prime}(z)-g_{2} \wp^{\prime}(z) \\
\wp^{\prime \prime}(z) & =6 \wp(z)^{2}-\frac{g_{2}}{2} . \tag{5}
\end{align*}
$$

By Theorem 14.28, the Laurent series for $\wp(z ; L)$ at $z=0$ is

$$
\wp(z)=\frac{1}{z^{2}}+\sum_{n=1}^{\infty}(2 n+1) G_{2 n+2} z^{2 n}=\frac{1}{z^{2}}+\sum_{n=1}^{\infty} a_{n} z^{2 n}
$$

where $a_{1}=g_{2} / 20$ and $a_{2}=g_{3} / 28$.
Comparing coefficients for the $z^{2 n}$ term in (5), we find that for $n \geq 2$ we have

$$
(2 n+2)(2 n+1) a_{n+1}=6\left(\sum_{k=1}^{n-1} a_{k} a_{n-k}+2 a_{n+1}\right),
$$

and therefore

$$
a_{n+1}=\frac{6}{(2 n+2)(2 n+1)-12} \sum_{k=1}^{n-1} a_{k} a_{n-k} .
$$

This allows us to compute a_{n+1} from a_{1}, \ldots, a_{n-1}, for all $n \geq 2$. It follows that $g_{2}(L)$ and $g_{3}(L)$ uniquely determine the function $\wp(z)=\wp(z ; L)$ (and therefore the lattice L where $\wp(z)$ has poles), since $\wp(z)$ is uniquely determined by its Laurent series expansion about 0 .

Now consider L^{\prime} and λL, where we have $g_{2}\left(L^{\prime}\right)=g_{2}(\lambda L)$ and $g_{3}\left(L^{\prime}\right)=g_{3}(\lambda L)$. It follows that $\wp\left(z ; L^{\prime}\right)=\wp(z ; \lambda L)$ and $L^{\prime}=\lambda L$, as desired.

Corollary 15.6. Two lattices L and L^{\prime} are homothetic if and only if the corresponding elliptic curves E_{L} and $E_{L^{\prime}}$ are isomorphic.

Thus homethety classes of lattices correspond to isomorphism classes of elliptic curves over \mathbb{C}, and both are classified by the j-invariant. Recall from Theorem 13.12 that every complex number is the j-invariant of an elliptic curve E / \mathbb{C}. To prove the Uniformization Theorem we just need to show that the same is true of lattices.

15.3 The j-function

Every lattice $\left[\omega_{1}, \omega_{2}\right]$ is homothetic to a lattice of the form $[1, \tau]$, with τ in the upper half plane $\mathbb{H}=\{z \in \mathbb{C}: \operatorname{im} z>0\}$; we may take $\tau= \pm \omega_{2} / \omega_{1}$ with the sign chosen so that $\operatorname{im} \tau>0$. This leads to the following definition of the j-function.

Definition 15.7. The j-function $j: \mathbb{H} \rightarrow \mathbb{C}$ is defined by $j(\tau)=j([1, \tau])$. We similarly define $g_{2}(\tau)=g_{2}([1, \tau]), g_{3}(\tau)=g_{3}([1, \tau])$, and $\Delta(\tau)=\Delta([1, \tau])$.

Note that for any $\tau \in \mathbb{H}$, both $-1 / \tau$ and $\tau+1$ lie in \mathbb{H} (the maps $\tau \mapsto 1 / \tau$ and $\tau \mapsto-\tau$ both swap the upper and lower half-planes; their composition preserves them).

Theorem 15.8. The j-function is holomorphic on \mathbb{H}, and satisfies $j(-1 / \tau)=j(\tau)$ and $j(\tau+1)=j(\tau)$.

Proof. From the definition of $j(\tau)=j([1, \tau])$ we have

$$
j(\tau)=1728 \frac{g_{2}(\tau)^{3}}{\Delta(\tau)}=1728 \frac{g_{2}(\tau)^{3}}{g_{2}(\tau)^{3}-27 g_{3}(\tau)^{2}}
$$

The series defining

$$
g_{2}(\tau)=60 \sum_{\substack{m, n \in \mathbb{Z} \\(m, n) \neq(0,0}} \frac{1}{(m+n \tau)^{4}} \quad \text { and } \quad g_{3}(\tau)=140 \sum_{\substack{m, n \in \mathbb{Z} \\(m, n) \neq(0,0)}} \frac{1}{(m+n \tau)^{6}}
$$

converge absolutely for any fixed $\tau \in \mathbb{H}$, by Lemma 14.22 , and they converge uniformly over τ in any compact subset of \mathbb{H}. The proof of this last fact is straight-forward but slightly technical; see [2, Thm. 1.15] for the details. It follows that $g_{2}(\tau)$ and $g_{3}(\tau)$ are holomorphic on \mathbb{H}, and therefore $\Delta(\tau)=g_{2}(\tau)^{3}-27 g_{3}(\tau)^{2}$ is also holomorphic on \mathbb{H}. Since $\Delta(\tau)$ is nonzero for all $\tau \in \mathbb{H}$, by Lemma 14.33, the j-function $j(\tau)$ is holomorphic on \mathbb{H} as well.

The lattices $[1, \tau]$ and $[1,-1 / \tau]=-1 / \tau[1, \tau]$ are homothetic, and the lattices $[1, \tau+1]$ and $[1, \tau]$ are equal; thus $j(-1 / \tau)=j(\tau)$ and $j(\tau+1)=j(\tau)$, by Theorem 15.5.

15.4 The modular group

We now consider the modular group

$$
\Gamma=\mathrm{SL}_{2}(\mathbb{Z})=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a, b, c, d \in \mathbb{Z}, a d-b c=1\right\} .
$$

As proved in Problem Set 8, the group Γ acts on \mathbb{H} via linear fractional transformations

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \tau=\frac{a \tau+b}{c \tau+d}
$$

and it is generated by the matrices $S=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ and $T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$. This implies that the j-function is invariant under the action of the modular group; in fact, more is true.

Figure 1: Fundamental domain \mathcal{F} for \mathbb{H} / Γ, with $i=e^{\pi / 2}$ and $\rho=e^{2 \pi i / 3}$.

Lemma 15.9. We have $j(\tau)=j\left(\tau^{\prime}\right)$ if and only if $\tau^{\prime}=\gamma \tau$ for some $\gamma \in \Gamma$.
Proof. We have $j(S \tau)=j(-1 / \tau)=j(\tau)$ and $j(T \tau)=j(\tau+1)=j(\tau)$, by Theorem 15.8, It follows that if $\tau^{\prime}=\gamma \tau$ then $j\left(\tau^{\prime}\right)=j(\tau)$, since S and T generate Γ.

To prove the converse, let us suppose that $j(\tau)=j\left(\tau^{\prime}\right)$. Then by Theorem 15.5, the lattices $[1, \tau]$ and $\left[1, \tau^{\prime}\right]$ are homothetic So $\left[1, \tau^{\prime}\right]=\lambda[1, \tau]$, for some $\lambda \in \mathbb{C}^{\times}$. There thus exist integers a, b, c, and d such that

$$
\begin{aligned}
\tau^{\prime} & =a \lambda \tau+b \lambda \\
1 & =c \lambda \tau+d \lambda
\end{aligned}
$$

From the second equation, we see that $\lambda=\frac{1}{c \tau+d}$. Substituting this into the first, we have

$$
\tau^{\prime}=\frac{a \tau+b}{c \tau+d}=\gamma \tau, \quad \text { where } \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathbb{Z}^{2 \times 2} .
$$

Similarly, using $[1, \tau]=\lambda^{-1}\left[1, \tau^{\prime}\right]$, we can write $\tau=\gamma^{\prime} \tau^{\prime}$ for some integer matrix γ^{\prime}. The fact that $\tau^{\prime}=\gamma \gamma^{\prime} \tau^{\prime}$ implies that $\operatorname{det} \gamma= \pm 1$ (since γ and γ^{\prime} are integer matrices). But τ and τ^{\prime} both lie in \mathbb{H}, so we must have $\operatorname{det} \gamma=1$; therefore $\gamma \in \Gamma$ as desired.

Lemma 15.9 implies that when studying the j-function it suffices to study its behavior on Γ-equivalence classes of \mathbb{H}, that is, the orbits of \mathbb{H} under the action of Γ. We thus consider the quotient of \mathbb{H} modulo Γ-equivalence, which we denote by $\mathbb{H} / \Gamma .{ }^{2}$ The actions of γ and $-\gamma$ are identical, so taking the quotient by $\mathrm{PSL}_{2}(\mathbb{Z})=\mathrm{SL}_{2}(\mathbb{Z}) /\{ \pm 1\}$ yields the same result, but for the sake of clarity we will stick with $\Gamma=\mathrm{SL}_{2}(\mathbb{Z})$.

We now wish to determine a fundamental domain for \mathbb{H} / Γ, a set of unique representatives in \mathbb{H} for each Γ-equivalence class. For this purpose we will use the set

$$
\mathcal{F}=\{\tau \in \mathbb{H}: \operatorname{re}(\tau) \in[-1 / 2,1 / 2) \text { and }|\tau| \geq 1, \text { such that }|\tau|>1 \text { if } \operatorname{re}(\tau)>0\} .
$$

Lemma 15.10. The set \mathcal{F} is a fundamental domain for \mathbb{H} / Γ.

[^1]Proof. We need to show that for every $\tau \in \mathbb{H}$, there is a unique $\tau^{\prime} \in \mathcal{F}$ such that $\tau^{\prime}=\gamma \tau$, for some $\gamma \in \Gamma$. We first prove existence. Let us fix $\tau \in \mathbb{H}$. For any $\gamma=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in \Gamma$ we have

$$
\begin{equation*}
\operatorname{im}(\gamma \tau)=\operatorname{im}\left(\frac{a \tau+b}{c \tau+d}\right)=\frac{\operatorname{im}((a \tau+b)(c \bar{\tau}+d))}{|c \tau+d|^{2}}=\frac{(a d-b c) \operatorname{im} \tau}{|c \tau+d|^{2}}=\frac{\operatorname{im} \tau}{|c \tau+d|^{2}} \tag{6}
\end{equation*}
$$

Let $c \tau+d$ be a shortest vector in the lattice $[1, \tau]$. Then c and d must be relatively prime, and we can pick integers a and b so that $a d-b c=1$. The matrix $\gamma_{0}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ then maximizes the value of $\operatorname{im}(\gamma \tau)$ over $\gamma \in \Gamma$. Let us now choose $\gamma=T^{k} \gamma_{0}$, where k is chosen so that $\operatorname{re}(\gamma \tau) \in[1 / 2,1 / 2)$, and note that $\operatorname{im}(\gamma \tau)=\operatorname{im}\left(\gamma_{0} \tau\right)$ remains maximal. We must have $|\gamma \tau| \geq 1$, since otherwise $\operatorname{im}(S \gamma \tau)>\operatorname{im}(\gamma \tau)$, contradicting the maximality of $\operatorname{im}(\gamma \tau)$. Finally, if $\tau^{\prime}=\gamma \tau \notin \mathcal{F}$, then we must have $|\gamma \tau|=1$ and $\operatorname{re}(\gamma \tau)>0$, in which case we replace γ by $S \gamma$ so that $\tau^{\prime}=\gamma \tau \in \mathcal{F}$.

It remains to show that τ^{\prime} is unique. This is equivalent to showing that any two Γ equivalent points in \mathcal{F} must coincide. So let τ_{1} and $\tau_{2}=\gamma_{1} \tau_{1}$ be two elements of \mathcal{F}, with $\gamma_{1}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, and assume $\operatorname{im} \tau_{1} \leq \operatorname{im} \tau_{2}$. By (6), we must have $\left|c \tau_{1}+d\right|^{2} \leq 1$, thus

$$
1 \geq\left|c \tau_{1}+d\right|^{2}=\left(c \tau_{1}+d\right)\left(c \bar{\tau}_{1}+d\right)=c^{2}\left|\tau_{1}\right|^{2}+d^{2}+2 c d \text { re } \tau_{1} \geq c^{2}\left|\tau_{1}\right|^{2}+d^{2}-|c d| \geq 1
$$

where the last inequality follows from $\left|\tau_{1}\right| \geq 1$ and the fact that c and d cannot both be zero (since $\operatorname{det} \gamma=1$). Thus $\left|c \tau_{1}+d\right|=1$, which implies $\operatorname{im} \tau_{2}=\operatorname{im} \tau_{1}$. We also have $|c|,|d| \leq 1$, and by replacing γ_{1} by $-\gamma_{1}$ if necessary, we may assume that $c \geq 0$. This leaves 3 cases:

1. $c=0$: then $|d|=1$ and $a=d$. So $\tau_{2}=\tau_{1} \pm b$, but \mid re $\tau_{2}-\operatorname{re} \tau_{1} \mid<1$, so $\tau_{2}=\tau_{1}$.
2. $c=1, d=0$: then $b=-1$ and $\left|\tau_{1}\right|=1$. So τ_{1} is on the unit circle and $\tau_{2}=a-1 / \tau_{1}$. Either $a=0$ and $\tau_{2}=\tau_{1}=i$, or $a=-1$ and $\tau_{2}=\tau_{1}=\rho$.
3. $c=1,|d|=1$: then $\left|\tau_{1}+d\right|=1$, so $\tau_{1}=\rho$, and $\operatorname{im} \tau_{2}=\operatorname{im} \tau_{1}=\sqrt{3} / 2 \operatorname{implies} \tau_{2}=\rho$.

In every case we have $\tau_{1}=\tau_{2}$ as desired.
Theorem 15.11. The restriction of the j-function to \mathcal{F} defines a bijection from \mathcal{F} to \mathbb{C}.
Proof. Injectivity follows immediately from Lemmas 15.9 and 15.10. It remains to prove surjectivity. We have

$$
g_{2}(\tau)=60 \sum_{\substack{n, m \in \mathbb{Z} \\(m, n) \neq(0,0)}} \frac{1}{(m+n \tau)^{4}}=60\left(2 \sum_{m=1}^{\infty} \frac{1}{m^{4}}+\sum_{\substack{n, m \in \mathbb{Z} \\ n \neq 0}} \frac{1}{(m+n \tau)^{4}}\right)
$$

The second sum tends to 0 as $\operatorname{im} \tau \rightarrow \infty$. Thus we have

$$
\lim _{i m \tau \rightarrow \infty} g_{2}(\tau)=120 \sum_{m=1}^{\infty} m^{-4}=120 \zeta(4)=120 \frac{\pi^{4}}{90}=\frac{4 \pi^{4}}{3}
$$

where $\zeta(s)$ is the Riemann zeta function. Similarly,

$$
\lim _{\mathrm{im} \tau \rightarrow \infty} g_{3}(\tau)=280 \zeta(6)=280 \frac{\pi^{6}}{945}=\frac{8 \pi^{6}}{27}
$$

Thus

$$
\lim _{i m \tau \rightarrow \infty} \Delta(\tau)=\left(\frac{4}{3} \pi^{4}\right)^{3}-27\left(\frac{8}{27} \pi^{6}\right)^{2}=0
$$

(this explains the coefficients 60 and 140 in the definitions of g_{2} and g_{3}; they are the smallest pair of integers that ensure this limit is 0). Since $\Delta(\tau)$ is the denominator of $j(\tau)$, the quantity $j(\tau)=g_{2}(\tau)^{3} / \Delta(\tau)$ is unbounded as $\operatorname{im} \tau \rightarrow \infty$.

In particular, the j-function is non-constant, and by Theorem 15.8 it is holomorphic on \mathbb{H}. The open mapping theorem implies that $j(\mathbb{H})$ is an open subset of \mathbb{C}; see [4, Thm. 3.4.4].

We claim that $j(\mathbb{H})$ is also a closed subset of \mathbb{C}. Let $j\left(\tau_{1}\right), j\left(\tau_{2}\right), \ldots$ be an arbitrary convergent sequence in $j(\mathbb{H})$, converging to $w \in \mathbb{C}$. The j-function is Γ-invariant, by Lemma 15.9, so we may assume the τ_{n} all lie in \mathcal{F}. The sequence $\operatorname{im} \tau_{1}, \operatorname{im} \tau_{2}, \ldots$ must be bounded, say be B, since $j(\tau) \rightarrow \infty$ as $\operatorname{im} \tau \rightarrow \infty$, but the sequence $j(\tau), j\left(\tau_{2}\right), \ldots$ converges; it follows that the τ_{n} all lie in the compact set

$$
\Omega=\{\tau: \operatorname{re} \tau \in[-1 / 2,1 / 2], \operatorname{im} \tau \in[1 / 2, B]\} .
$$

There is thus a subsequence of the τ_{n} that converges to some $\tau \in \Omega \subset \mathbb{H}$. The j-function is holomorphic, hence continuous, so $j(\tau)=w$. It follows that the open set $j(\mathbb{H})$ contains all its limit points and is therefore closed.

The fact that the non-empty set $j(\mathbb{H}) \subseteq \mathbb{C}$ is both open and closed implies that $j(\mathbb{H})=\mathbb{C}$, since \mathbb{C} is connected. It follows that $j(\mathcal{F})=\mathbb{C}$, since every element of \mathbb{H} is Γ-equivalent to an element of \mathcal{F} (Lemma 15.10) and the j-function is Γ-invariant (Lemma 15.9).

Corollary 15.12 (Uniformization Theorem). For every elliptic curve E / \mathbb{C} there exists a lattice L such that $E=E_{L}$.

Proof. Given E / \mathbb{C}, pick $\tau \in \mathbb{H}$ so that $j(\tau)=j(E)$ and let $L^{\prime}=[1, \tau]$. We have

$$
j(E)=j(\tau)=j\left(L^{\prime}\right)=j\left(E_{L^{\prime}}\right),
$$

so E is isomorphic to $E_{L^{\prime}}$, by Theorem 13.13, where the isomorphism is given by the map $(x, y) \mapsto\left(\mu^{2} x, \mu^{3} y\right)$ for some $\mu \in \mathbb{C}^{\times}$. If now let $L=\frac{1}{\mu} L^{\prime}$, then $E=E_{L}$.

References

[1] Lars V. Ahlfors, Complex analysis, third edition, McGraw Hill, 1979.
[2] Tom M. Apostol, Modular functions and Dirichlet series in number theory, second edition, Springer, 1990.
[3] Joseph H. Silverman, The arithmetic of elliptic curves, second edition, Springer 2009.
[4] Elias M. Stein and Rami Shakarchi, Complex analysis, Princeton University Press, 2003.

MIT OpenCourseWare
https://ocw.mit.edu
18.783 / 18.7831 Elliptic Curves

Spring 2021

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ This is not difficult to show, but it would distract us from our immediate goal. We will see an explicit isomorphism of complex manifolds in a few lectures when we study modular curves, and in that case we will take the time to define precisely what this means and to prove it.

[^1]: ${ }^{2}$ Some authors write this quotient as $\Gamma \backslash \mathbb{H}$ to indicate that the action is on the left.

