16 Riemann's zeta function and the prime number theorem

We now divert our attention from algebraic number theory to talk about zeta functions and L-functions. As we shall see, every global field has a zeta function that is intimately related to the distribution of its primes. We begin with the zeta function of the rational field \mathbb{Q}, which we will use to prove the prime number theorem.

We will need some basic results from complex analysis, all of which can be found in any introductory textbook (such as $[1,2,3,7,12]$). A short glossary of terms and a list of the basic theorems we will use can be found at the end of these notes. ${ }^{1}$

16.1 The Riemann zeta function

Definition 16.1. The Riemann zeta function is the complex function defined by the series

$$
\zeta(s):=\sum_{n \geq 1} n^{-s},
$$

for $\operatorname{Re}(s)>1$, where n varies over positive integers. It is easy to verify that this series converges absolutely and locally uniformly on $\operatorname{Re}(s)>1$ (use the integral test on an open ball strictly to the right of the line $\operatorname{Re}(s)=1$). By Theorem 16.17, it defines a holomorphic function on $\operatorname{Re}(s)>1$, since each term $n^{-s}=e^{-s \log n}$ is holomorphic.

Theorem 16.2 (Euler product). For $\operatorname{Re}(s)>1$ we have

$$
\zeta(s)=\sum_{n \geq 1} n^{-s}=\prod_{p}\left(1-p^{-s}\right)^{-1},
$$

where the product converges absolutely. In particular, $\zeta(s) \neq 0$ for $\operatorname{Re}(s)>1$.
The product in the theorem above ranges over primes p. This is a standard practice in analytic number theory that we will follow: the symbol p always denotes a prime, and any sum or product over p is understood to be over primes, even if this is not explicitly stated.

Proof. We have

$$
\sum_{n \geq 1} n^{-s}=\sum_{n \geq 1} \prod_{p} p^{-v_{p}(n) s}=\prod_{p} \sum_{e \geq 0} p^{-e s}=\prod_{p}\left(1-p^{-s}\right)^{-1} .
$$

To justify the second equality, consider the partial zeta function $\zeta_{m}(s)$, which restricts the summation in $\zeta(s)$ to the set S_{m} of m-smooth integers (those with no prime factors $p>m$). If p_{1}, \ldots, p_{k} are the primes up to m, absolute convergence implies

$$
\zeta_{m}(s):=\sum_{n \in S_{m}} n^{-s}=\sum_{e_{1}, \ldots, e_{k} \geq 0}\left(p_{1}^{e_{1}} \cdots p_{k}^{e_{k}}\right)^{-s}=\prod_{1 \leq i \leq k} \sum_{e_{i} \geq 0}\left(p_{i}^{-s}\right)^{e_{i}}=\prod_{p \leq m}\left(1-p^{-s}\right)^{-1} .
$$

For any $\delta>0$ the sequence of functions $\zeta_{m}(s)$ converges uniformly on $\operatorname{Re}(s)>1+\delta$ to $\zeta(s)$; indeed, for any $\epsilon>0$ and any such s we have

$$
\left|\zeta_{m}(s)-\zeta(s)\right| \leq\left|\sum_{n \geq m} n^{-s}\right| \leq \sum_{n \geq m}\left|n^{-s}\right|=\sum_{n \geq m} n^{-\operatorname{Re}(s)} \leq \int_{m}^{\infty} x^{-1-\delta} d x \leq \frac{1}{\delta} m^{-\delta}<\epsilon
$$

[^0]for all sufficiently large m. It follows that the sequence $\zeta_{m}(s)$ converges locally uniformly to $\zeta(s)$ on $\operatorname{Re}(s)>1$. The sequence of functions $P_{m}(s):=\prod_{p \leq m}\left(1-p^{-s}\right)^{-1}$ clearly converges locally uniformly to $\Pi\left(1-p^{-s}\right)^{-1}$ on any region in which the latter function is absolutely convergent (or even just convergent). For any s in $\operatorname{Re}(s)>1$ we have
$$
\sum_{p}\left|\log \left(1-p^{-s}\right)^{-1}\right|=\sum_{p}\left|\sum_{e \geq 1} \frac{1}{e} p^{-e s}\right| \leq \sum_{p} \sum_{e \geq 1}\left|p^{-s}\right|^{e}=\sum_{p}\left(\left|p^{s}\right|-1\right)^{-1}<\infty,
$$
where we have used the identity $\log (1-z)=-\sum_{n \geq 1} \frac{1}{n} z^{n}$, valid for $|z|<1$. It follows that $\prod_{p}\left(1-p^{-s}\right)^{-1}$ is absolutely convergent (and in particular, nonzero) on $\operatorname{Re}(s)>1$.
Theorem 16.3 (Analytic continuation I). For $\operatorname{Re}(s)>1$ we have
$$
\zeta(s)=\frac{1}{s-1}+\phi(s),
$$
where $\phi(s)$ is a holomorphic function on $\operatorname{Re}(s)>0$. Thus $\zeta(s)$ extends to a meromorphic function on $\operatorname{Re}(s)>0$ that has a simple pole at $s=1$ with residue 1 and no other poles.

Proof. For $\operatorname{Re}(s)>1$ we have

$$
\zeta(s)-\frac{1}{s-1}=\sum_{n \geq 1} n^{-s}-\int_{1}^{\infty} x^{-s} d x=\sum_{n \geq 1}\left(n^{-s}-\int_{n}^{n+1} x^{-s} d x\right)=\sum_{n \geq 1} \int_{n}^{n+1}\left(n^{-s}-x^{-s}\right) d x
$$

For each $n \geq 1$ the function $\phi_{n}(s):=\int_{n}^{n+1}\left(n^{-s}-x^{-s}\right) d x$ is holomorphic on $\operatorname{Re}(s)>0$. For each fixed s in $\operatorname{Re}(s)>0$ and $x \in[n, n+1]$ we have

$$
\left|n^{-s}-x^{-s}\right|=\left|\int_{n}^{x} s t^{-s-1} d t\right| \leq \int_{n}^{x} \frac{|s|}{\left|t^{s+1}\right|} d t=\int_{n}^{x} \frac{|s|}{t^{1+\operatorname{Re}(s)}} d t \leq \frac{|s|}{n^{1+\operatorname{Re}(s)}},
$$

and therefore

$$
\left|\phi_{n}(s)\right| \leq \int_{n}^{n+1}\left|n^{-s}-x^{-s}\right| d x \leq \frac{|s|}{n^{1+\operatorname{Re}(s)}}
$$

For any s_{0} with $\operatorname{Re}\left(s_{0}\right)>0$, if we put $\epsilon:=\operatorname{Re}\left(s_{0}\right) / 2$ and $U:=B_{<\epsilon}\left(s_{0}\right)$, then for each $n \geq 1$,

$$
\sup _{s \in U}\left|\phi_{n}(s)\right| \leq \frac{\left|s_{0}\right|+\epsilon}{n^{1+\epsilon}}=: M_{n}
$$

and $\sum_{n} M_{n}=\left(\left|s_{0}\right|+\epsilon\right) \zeta(1+\epsilon)$ converges. The series $\sum_{n} \phi_{n}$ thus converges locally normally on $\operatorname{Re}(s)>0$. By the Weierstrass M-test (Theorem 16.19), $\sum_{n} \phi_{n}$ converges to a function $\phi(s)=\zeta(s)-\frac{1}{s-1}$ that is holomorphic on $\operatorname{Re}(s)>0$.

We now show that $\zeta(s)$ has no zeros on $\operatorname{Re}(s)=1$; this fact is crucial to the prime number theorem. For this we use the following ingenious lemma, attributed to Mertens. ${ }^{2}$

Lemma 16.4 (Mertens). For $x, y \in \mathbb{R}$ with $x>1$ we have $\left|\zeta(x)^{3} \zeta(x+i y)^{4} \zeta(x+2 i y)\right| \geq 1$.

[^1]Proof. From the Euler product $\zeta(s)=\prod_{p}\left(1-p^{-s}\right)^{-1}$, we see that for $\operatorname{Re}(s)>1$ we have

$$
\log |\zeta(s)|=-\sum_{p} \log \left|1-p^{-s}\right|=-\sum_{p} \operatorname{Re} \log \left(1-p^{-s}\right)=\sum_{p} \sum_{n \geq 1} \frac{\operatorname{Re}\left(p^{-n s}\right)}{n},
$$

since $\log |z|=\operatorname{Re} \log z$ and $\log (1-z)=-\sum_{n \geq 1} \frac{z^{n}}{n}$ for $|z|<1$. Plugging in $s=x+i y$ yields

$$
\log |\zeta(x+i y)|=\sum_{p} \sum_{n \geq 1} \frac{\cos (n y \log p)}{n p^{n x}},
$$

since $\operatorname{Re}\left(p^{-n s}\right)=p^{-n x} \operatorname{Re}\left(e^{-i n y \log p}\right)=p^{-n x} \cos (-n y \log p)=p^{-n x} \cos (n y \log p)$. Thus

$$
\log \left|\zeta(x)^{3} \zeta(x+i y)^{4} \zeta(x+2 i y)\right|=\sum_{p} \sum_{n \geq 1} \frac{3+4 \cos (n y \log p)+\cos (2 n y \log p)}{n p^{n x}} .
$$

We now note that the trigonometric identity $\cos (2 \theta)=2 \cos ^{2} \theta-1$ implies

$$
3+4 \cos \theta+\cos (2 \theta)=2(1+\cos \theta)^{2} \geq 0
$$

Taking $\theta=n y \log p$ yields $\log \left|\zeta(x)^{3} \zeta(x+i y)^{4} \zeta(x+2 i y)\right| \geq 0$, which proves the lemma.
Corollary 16.5. $\zeta(s)$ has no zeros on $\operatorname{Re}(s) \geq 1$.
Proof. We know from Theorem 16.2 that $\zeta(s)$ has no zeros on $\operatorname{Re}(s)>1$, so suppose $\zeta(1+$ $i y)=0$ for some $y \in \mathbb{R}$. Then $y \neq 0$, since $\zeta(s)$ has a pole at $s=1$, and we know that $\zeta(s)$ does not have a pole at $1+2 i y \neq 1$, by Theorem 16.3. We therefore must have

$$
\begin{equation*}
\lim _{x \rightarrow 1}\left|\zeta(x)^{3} \zeta(x+i y)^{4} \zeta(x+2 i y)\right|=0, \tag{1}
\end{equation*}
$$

since $\zeta(s)$ has a simple pole at $s=1$, a zero at $1+i y$, and no pole at $1+2 i y$. But this contradicts Lemma 16.4.

16.2 The Prime Number Theorem

The prime counting function $\pi: \mathbb{R} \rightarrow \mathbb{Z}_{\geq 0}$ is defined by

$$
\pi(x):=\sum_{p \leq x} 1 ;
$$

it counts the number of primes up to x. The prime number theorem (PNT) states that

$$
\pi(x) \sim \frac{x}{\log x}
$$

The notation $f(x) \sim g(x)$ means $\lim _{x \rightarrow \infty} f(x) / g(x)=1$; one says that f is asymptotic to g.
This conjectured growth rate for $\pi(x)$ dates back to Gauss and Legendre in the late 18th century. In fact Gauss believed the asymptotically equivalent but more accurate statement ${ }^{3}$

$$
\pi(x) \sim \operatorname{Li}(x):=\int_{2}^{x} \frac{d t}{\log t}
$$

[^2]However it was not until a century later that the prime number theorem was independently proved by Hadamard [5] and de la Vallée Poussin [9] in 1896. Their proofs are both based on the work of Riemann [10], who in 1860 showed that there is a precise connection between the zeros of $\zeta(s)$ and the distribution of primes (we shall say more about this later), but was unable to prove the prime number theorem.

The proof we will give is more recent and due to Newman [8], but it relies on the same properties of the Riemann zeta function that were exploited by both Hadamard and de la Vallée, the most essential of which is the fact that $\zeta(s)$ has no zeros on $\operatorname{Re}(s) \geq 1$ (Corollary 16.5). A concise version of Newman's proof by Zagier can be found in [15]; we will follow Zagier's outline but be slightly more expansive in our presentation. We should note that there are also "elementary" proofs of the prime number theorem independently obtained by Erdös [4] and Selberg [11] in the 1940s that do not use the Riemann zeta function, but they are elementary only in the sense that they do not use complex analysis; the details of these proofs are considerably more complicated than the one we will give.

Rather than work directly with $\pi(x)$, it is more convenient to work with the log-weighted prime-counting function defined by Chebyshev ${ }^{4}$

$$
\vartheta(x):=\sum_{p \leq x} \log p,
$$

whose growth rate differs from that of $\pi(x)$ by a logarithmic factor.
Theorem 16.6 (Chebyshev). $\pi(x) \sim \frac{x}{\log x}$ if and only if $\vartheta(x) \sim x$.
Proof. We clearly have $0 \leq \vartheta(x) \leq \pi(x) \log x$, thus

$$
\frac{\vartheta(x)}{x} \leq \frac{\pi(x) \log x}{x}
$$

For every $\epsilon \in(0,1)$ we have

$$
\begin{aligned}
\vartheta(x) \geq \sum_{x^{1-\epsilon}<p \leq x} \log p & \geq(1-\epsilon)(\log x)\left(\pi(x)-\pi\left(x^{1-\epsilon}\right)\right) \\
& \geq(1-\epsilon)(\log x)\left(\pi(x)-x^{1-\epsilon}\right),
\end{aligned}
$$

and therefore

$$
\pi(x) \leq\left(\frac{1}{1-\epsilon}\right) \frac{\vartheta(x)}{\log x}+x^{1-\epsilon} .
$$

Thus for all $\epsilon \in(0,1)$ we have

$$
\frac{\vartheta(x)}{x} \leq \frac{\pi(x) \log x}{x} \leq\left(\frac{1}{1-\epsilon}\right) \frac{\vartheta(x)}{x}+\frac{\log x}{x^{\epsilon}} .
$$

The second term on the RHS tends to 0 as $x \rightarrow \infty$, and the lemma follows: by choosing ϵ sufficiently small we can make the ratios of $\vartheta(x)$ to x and $\pi(x)$ to $x / \log x$ arbitrarily close together as $x \rightarrow \infty$, so if one of them tends to 1 , so must the other.

[^3]In view of Chebyshev's result, the prime number theorem is equivalent to $\vartheta(x) \sim x$. We thus want to prove $\lim _{x \rightarrow \infty} \vartheta(x) / x=1$; let us first show that $\lim _{x \rightarrow \infty} \vartheta(x) / x$ bounded, which is indicated by the asymptotic notation $\vartheta(x)=O(x) .{ }^{5}$

Lemma 16.7 (Chebyshev). For $x \geq 1$ we have $\vartheta(x) \leq(4 \log 2) x$, thus $\vartheta(x)=O(x)$.
Proof. For any integer $n \geq 1$, the binomial theorem implies

$$
2^{2 n}=(1+1)^{2 n}=\sum_{m=0}^{2 n}\binom{2 n}{m} \geq\binom{ 2 n}{n}=\frac{(2 n)!}{n!n!} \geq \prod_{n<p \leq 2 n} p=\exp (\vartheta(2 n)-\vartheta(n)),
$$

since $(2 n)$! is divisible by every prime $p \in(n, 2 n]$ but $n!$ is not divisible by any such p. Taking logarithms on both sides yields

$$
\vartheta(2 n)-\vartheta(n) \leq 2 n \log 2,
$$

valid for all integers $n \geq 1$. For any integer $m \geq 1$ we have

$$
\vartheta\left(2^{m}\right)=\sum_{n=1}^{m}\left(\vartheta\left(2^{n}\right)-\vartheta\left(2^{n-1}\right)\right) \leq \sum_{n=1}^{m} 2^{n} \log 2 \leq 2^{m+1} \log 2 .
$$

For any real $x \geq 1$ we can choose an integer $m \geq 1$ so that $2^{m-1} \leq x<2^{m}$, and then

$$
\vartheta(x) \leq \vartheta\left(2^{m}\right) \leq 2^{m+1} \log 2=(4 \log 2) 2^{m-1} \leq(4 \log 2) x,
$$

as claimed.
In order to prove $\vartheta(x) \sim x$, we will use a general analytic criterion applicable to any non-decreasing real function $f(x)$.

Lemma 16.8. Let $f: \mathbb{R}_{\geq 1} \rightarrow \mathbb{R}$ be a nondecreasing function. If the integral $\int_{1}^{\infty} \frac{f(t)-t}{t^{2}} d t$ converges then $f(x) \sim x$.

Proof. Let $F(x):=\int_{1}^{x} \frac{f(t)-t}{t^{2}} d t$. The hypothesis is that $\lim _{x \rightarrow \infty} F(x)$ exists. This implies that for all $\lambda>1$ and all $\epsilon>0$ we have $|F(\lambda x)-F(x)|<\epsilon$ for all sufficiently large x.

Fix $\lambda>1$ and suppose there is an unbounded sequence $\left(x_{n}\right)$ such that $f\left(x_{n}\right) \geq \lambda x_{n}$ for all $n \geq 1$. For each x_{n} we have

$$
F\left(\lambda x_{n}\right)-F\left(x_{n}\right)=\int_{x_{n}}^{\lambda x_{n}} \frac{f(t)-t}{t^{2}} d t \geq \int_{x_{n}}^{\lambda x_{n}} \frac{\lambda x_{n}-t}{t^{2}} d t=\int_{1}^{\lambda} \frac{\lambda-t}{t^{2}} d t=c
$$

for some $c>0$, where we used the fact that f is non-decreasing to get the middle inequality. Taking $\epsilon<c$, we have $\left|F\left(\lambda x_{n}\right)-F\left(x_{n}\right)\right|=c>\epsilon$ for arbitrarily large x_{n}, a contradiction. Thus $f(x)<\lambda x$ for all sufficiently large x. A similar argument shows that $f(x)>\frac{1}{\lambda} x$ for all sufficiently large x. These inequalities hold for all $\lambda>1$, so $\lim _{x \rightarrow \infty} f(x) / x=1$. Equivalently, $f(x) \sim x$.

[^4]In order to show that the hypothesis of Lemma 16.8 is satisfied for $f=\vartheta$, we will work with the function $H(t)=\vartheta\left(e^{t}\right) e^{-t}-1$; the change of variables $t=e^{u}$ shows that

$$
\int_{1}^{\infty} \frac{\vartheta(t)-t}{t^{2}} d t \text { converges } \quad \Longleftrightarrow \quad \int_{0}^{\infty} H(u) d u \text { converges }
$$

We now recall the Laplace transform.
Definition 16.9. Let $h: \mathbb{R}_{>0} \rightarrow \mathbb{R}$ be a piecewise continuous function. The Laplace transform $\mathcal{L} h$ of h is the complex function defined by

$$
\mathcal{L} h(s):=\int_{0}^{\infty} e^{-s t} h(t) d t,
$$

which is holomorphic on $\operatorname{Re}(s)>c$ for any $c \in \mathbb{R}$ for which $h(t)=O\left(e^{c t}\right)$.
The following properties of the Laplace transform are easily verified.

- $\mathcal{L}(g+h)=\mathcal{L} g+\mathcal{L} h$, and for any $a \in \mathbb{R}$ we have $\mathcal{L}(a h)=a \mathcal{L} h$.
- If $h(t)=a \in \mathbb{R}$ is constant then $\mathcal{L} h(s)=\frac{a}{s}$.
- $\mathcal{L}\left(e^{a t} h(t)\right)(s)=\mathcal{L}(h)(s-a)$ for all $a \in \mathbb{R}$.

We now define the auxiliary function

$$
\Phi(s):=\sum_{p} p^{-s} \log p
$$

which is related to $\vartheta(x)$ by the following lemma.
Lemma 16.10. $\mathcal{L}\left(\vartheta\left(e^{t}\right)\right)(s)=\frac{\Phi(s)}{s}$ is holomorphic on $\operatorname{Re}(s)>1$.
Proof. By Lemma 16.7, $\vartheta\left(e^{t}\right)=O\left(e^{t}\right)$, so $\mathcal{L}\left(\vartheta\left(e^{t}\right)\right)$ is holomorphic on $\operatorname{Re}(s)>1$. Let p_{n} be the nth prime, and put $p_{0}:=0$. The function $\vartheta\left(e^{t}\right)$ is constant on $t \in\left(\log p_{n}, \log p_{n+1}\right)$, so

$$
\int_{\log p_{n}}^{\log p_{n+1}} e^{-s t} \vartheta\left(e^{t}\right) d t=\vartheta\left(p_{n}\right) \int_{\log p_{n}}^{\log p_{n+1}} e^{-s t} d t=\frac{1}{s} \vartheta\left(p_{n}\right)\left(p_{n}^{-s}-p_{n+1}^{-s}\right) .
$$

We then have

$$
\begin{aligned}
\left(\mathcal{L} \vartheta\left(e^{t}\right)\right)(s)=\int_{0}^{\infty} e^{-s t} \vartheta\left(e^{t}\right) d t & =\frac{1}{s} \sum_{n=1}^{\infty} \vartheta\left(p_{n}\right)\left(p_{n}^{-s}-p_{n+1}^{-s}\right) \\
& =\frac{1}{s} \sum_{n=1}^{\infty} \vartheta\left(p_{n}\right) p_{n}^{-s}-\frac{1}{s} \sum_{n=1}^{\infty} \vartheta\left(p_{n-1}\right) p_{n}^{-s} \\
& =\frac{1}{s} \sum_{n=1}^{\infty}\left(\vartheta\left(p_{n}\right)-\vartheta\left(p_{n-1}\right)\right) p_{n}^{-s} \\
& =\frac{1}{s} \sum_{n=1}^{\infty} p_{n}^{-s} \log p_{n}=\frac{\Phi(s)}{s} .
\end{aligned}
$$

Let us now consider the function $H(t):=\vartheta\left(e^{t}\right) e^{-t}-1$. It follows from the lemma and standard properties of the Laplace transform that on $\operatorname{Re}(s)>0$ we have

$$
\mathcal{L} H(s)=\mathcal{L}\left(\vartheta\left(e^{t}\right) e^{-t}\right)(s)-(\mathcal{L} 1)(s)=\mathcal{L}\left(\vartheta\left(e^{t}\right)\right)(s+1)-\frac{1}{s}=\frac{\Phi(s+1)}{s+1}-\frac{1}{s}
$$

Lemma 16.11. The function $\Phi(s)-\frac{1}{s-1}$ extends to a meromorphic function on $\operatorname{Re}(s)>\frac{1}{2}$ that is holomorphic on $\operatorname{Re}(s) \geq 1$.

Proof. By Theorem 16.3, $\zeta(s)$ extends to a meromorphic function on $\operatorname{Re}(s)>0$, which we also denote $\zeta(s)$, that has only a simple pole at $s=1$ and no zeros on $\operatorname{Re}(s) \geq 1$, by Corollary 16.5. It follows that the logarithmic derivative $\zeta^{\prime}(s) / \zeta(s)$ of $\zeta(s)$ is meromorphic on $\operatorname{Re}(s)>0$, with no zeros on $\operatorname{Re}(s) \geq 1$ and only a simple pole at $s=1$ with residue -1 (see $\S 16.3 .1$ for standard facts about the logarithmic derivative of a meromorphic function). In terms of the Euler product, for $\operatorname{Re}(s)>1$ we have ${ }^{6}$

$$
\begin{aligned}
-\frac{\zeta^{\prime}(s)}{\zeta(s)} & =(-\log \zeta(s))^{\prime}=\left(-\log \prod_{p}\left(1-p^{-s}\right)^{-1}\right)^{\prime}=\left(\sum_{p} \log \left(1-p^{-s}\right)\right)^{\prime} \\
& =\sum_{p} \frac{p^{-s} \log p}{1-p^{-s}}=\sum_{p} \frac{\log p}{p^{s}-1}=\sum_{p}\left(\frac{1}{p^{s}}+\frac{1}{p^{s}\left(p^{s}-1\right)}\right) \log p \\
& =\Phi(s)+\sum_{p} \frac{\log p}{p^{s}\left(p^{s}-1\right)}
\end{aligned}
$$

The sum on the RHS converges absolutely and locally uniformly to a holomorphic function on $\operatorname{Re}(s)>1 / 2$. The LHS is meromorphic on $\operatorname{Re}(s)>0$, and on $\operatorname{Re}(s) \geq 1$ it has only a simple pole at $s=1$ with residue 1. It follows that $\Phi(s)-\frac{1}{s-1}$ extends to a meromorphic function on $\operatorname{Re}(s)>\frac{1}{2}$ that is holomorphic on $\operatorname{Re}(s) \geq 1$.

Corollary 16.12. The functions $\Phi(s+1)-\frac{1}{s}$ and $(\mathcal{L} H)(s)=\frac{\Phi(s+1)}{s+1}-\frac{1}{s}$ both extend to meromorphic functions on $\operatorname{Re}(s)>-\frac{1}{2}$ that are holomorphic on $\operatorname{Re}(s) \geq 0$.

Proof. The first statement follows immediately from the lemma. For the second, note that

$$
\frac{\Phi(s+1)}{s+1}-\frac{1}{s}=\frac{1}{s+1}\left(\Phi(s+1)-\frac{1}{s}\right)-\frac{1}{s+1}
$$

is meromorphic on $\operatorname{Re}(s)>-\frac{1}{2}$ and holomorphic on $\operatorname{Re}(s) \geq 0$, since it is a sum of products of such functions.

The final step of the proof relies on the following analytic result due to Newman [8].
Theorem 16.13. Let $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$ be a bounded piecewise continuous function, and suppose its Laplace transform extends to a holomorphic function $g(s)$ on $\operatorname{Re}(s) \geq 0$. Then the integral $\int_{0}^{\infty} f(t) d t$ converges and is equal to $g(0)$.

Proof. Without loss of generality we assume $f(t) \leq 1$ for all $t \geq 0$. For $\tau \in \mathbb{R}_{>0}$, define $g_{\tau}(s):=\int_{0}^{\tau} f(t) e^{-s t} d t$, By definition $\int_{0}^{\infty} f(t) d t=\lim _{\tau \rightarrow \infty} g_{\tau}(0)$, thus it suffices to prove

$$
\lim _{\tau \rightarrow \infty} g_{\tau}(0)=g(0)
$$

For $r>0$, let γ_{r} be the boundary of the region $\left\{s:|s| \leq r\right.$ and $\left.\operatorname{Re}(s) \geq-\delta_{r}\right\}$ with $\delta_{r}>0$ chosen so that g is holomorphic on γ_{r}; such a δ_{r} exists because g is holomorphic on $\operatorname{Re}(s) \geq 0$, hence on some open ball $B_{\leq 2 \delta(y)}(i y)$ for each $y \in[-r, r]$, and we may take

[^5]$\delta_{r}:=\inf \{\delta(y): y \in[r,-r]\}$, which is positive because $[-r, r]$ is compact. Each γ_{r} is a simple closed curve, and for each $\tau>0$ the function $h(s):=\left(g(s)-g_{\tau}(s)\right) e^{s \tau}\left(1+\frac{s^{2}}{r^{2}}\right)$ is holomorphic on a region containing γ_{r}. Using Cauchy's integral formula (Theorem 16.26) to evaluate $h(0)$ yields
\[

$$
\begin{equation*}
g(0)-g_{\tau}(0)=h(0)=\frac{1}{2 \pi i} \int_{\gamma_{r}}\left(g(s)-g_{\tau}(s)\right) e^{s \tau}\left(\frac{1}{s}+\frac{s}{r^{2}}\right) d s . \tag{2}
\end{equation*}
$$

\]

We will show the LHS tends to 0 as $\tau \rightarrow \infty$ by showing that for any $\epsilon>0$ we can set $r=3 / \epsilon>0$ so that the absolute value of the RHS is less than ϵ for all sufficiently large τ.

Let γ_{r}^{+}denote the part of γ_{r} in $\operatorname{Re}(s)>0$, a semicircle of radius r. The integrand is absolutely bounded by $1 / r$ on γ_{r}^{+}, since for $|s|=r$ and $\operatorname{Re}(s)>0$ we have

$$
\begin{aligned}
\left|g(s)-g_{\tau}(s)\right| \cdot\left|e^{s \tau}\left(\frac{1}{s}+\frac{s}{r^{2}}\right)\right| & =\left|\int_{\tau}^{\infty} f(t) e^{-s t} d t\right| \cdot \frac{e^{\operatorname{Re}(s) \tau}}{r} \cdot\left|\frac{r}{s}+\frac{s}{r}\right| \\
& \leq \int_{\tau}^{\infty} e^{-\operatorname{Re}(s) t} d t \cdot \frac{e^{\operatorname{Re}(s) \tau}}{r} \cdot \frac{2 \operatorname{Re}(s)}{r} \\
& =\frac{e^{-\operatorname{Re}(s) \tau}}{\operatorname{Re}(s)} \cdot \frac{e^{\operatorname{Re}(s) \tau}}{r} \cdot \frac{2 \operatorname{Re}(s)}{r} \\
& =2 / r^{2} .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\left|\frac{1}{2 \pi i} \int_{\gamma_{r}^{+}}\left(g(s)-g_{\tau}(s)\right) e^{s \tau}\left(\frac{1}{s}+\frac{s}{r^{2}}\right) d s\right| \leq \frac{1}{2 \pi} \cdot \pi r \cdot \frac{2}{r^{2}}=\frac{1}{r} \tag{3}
\end{equation*}
$$

Now let γ_{r}^{-}be the part of γ_{r} in $\operatorname{Re}(s)<0$, a truncated semi-circle. For any fixed r, the first term $g(s) e^{s \tau}\left(s^{-1}+s r^{-2}\right)$ in the integrand of (2) tends to 0 as $\tau \rightarrow \infty$ for $\operatorname{Re}(s)<0$ and $|s| \leq r$. For the second term we note that since $g_{\tau}(s)$ is holomorphic on \mathbb{C}, it makes no difference if we instead integrate over the semicircle of radius r in $\operatorname{Re}(s)<0$. For $|s|=r$ and $\operatorname{Re}(s)<0$ we then have

$$
\begin{aligned}
\left|g_{\tau}(s) e^{s \tau}\left(\frac{1}{s}+\frac{s}{r^{2}}\right)\right| & =\left|\int_{0}^{\tau} f(t) e^{-s t} d t\right| \cdot \frac{e^{\operatorname{Re}(s) \tau}}{r} \cdot\left|\frac{r}{s}+\frac{s}{r}\right| \\
& \leq \int_{0}^{\tau} e^{-\operatorname{Re}(s) t} d t \cdot \frac{e^{\operatorname{Re}(s) \tau}}{r} \frac{(-2 \operatorname{Re}(s))}{r} \\
& =\left(1-\frac{e^{-\operatorname{Re}(s) \tau}}{\operatorname{Re}(s)}\right) \frac{e^{\operatorname{Re}(s) \tau}}{r} \frac{(-2 \operatorname{Re}(s))}{r} \\
& =2 / r^{2} \cdot\left(1-e^{\operatorname{Re}(s) \tau} \operatorname{Re}(s)\right),
\end{aligned}
$$

where the factor $\left(1-e^{\operatorname{Re}(s) \tau} \operatorname{Re}(s)\right)$ on the RHS tends to 1 as $\tau \rightarrow \infty$ since $\operatorname{Re}(s)<0$. We thus obtain the bound $1 / r+o(1)$ when we replace γ_{r}^{+}with γ_{r}^{-}in (3), and the RHS of (2) is bounded by $2 / r+o(1)$ as $\tau \rightarrow \infty$. It follows that for any $\epsilon>0$, for $r=3 / \epsilon>0$ we have

$$
\left|g(0)-g_{\tau}(0)\right|<3 / r=\epsilon
$$

for all sufficiently large τ. Therefore $\lim _{\tau \rightarrow \infty} g_{\tau}(0)=g(0)$ as desired.

Remark 16.14. Theorem 16.13 is an example of what is known as a Tauberian theorem. For a piecewise continuous function $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$, its Laplace transform

$$
\mathcal{L} f(s):=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

is typically not defined on $\operatorname{Re}(s) \leq c$, where c is the least c for which $f(t)=O\left(e^{c t}\right)$. Now it may happen that the function $\mathcal{L} f$ has an analytic continuation to a larger domain; for example, if $f(t)=e^{t}$ then $(\mathcal{L} f)(s)=\frac{1}{s-1}$ extends to a holomorphic function on $\mathbb{C}-\{1\}$. But plugging values of s with $\operatorname{Re}(s) \leq c$ into the integral usually does not work; in our $f(t)=e^{t}$ example, the integral diverges on $\operatorname{Re}(s) \leq 1$. The theorem says that when $\mathcal{L} f$ extends to a holomorphic function on the entire half-plane $\operatorname{Re}(s) \geq 0$, its value at $s=0$ is exactly what we would get by simply plugging 0 into the integral defining $\mathcal{L} f$.

More generally, Tauberian theorems refer to results related to transforms $f \rightarrow \mathcal{T}(f)$ that allow us to deduce properties of f (such as the convergence of $\left.\int_{0}^{\infty} f(t) d t\right)$ from properties of $\mathcal{T}(f)$ (such as analytic continuation to $\operatorname{Re}(s) \geq 0$). The term "Tauberian" was coined by Hardy and Littlewood and refers to Alfred Tauber, who proved a theorem of this type as a partial converse to a theorem of Abel.

Theorem 16.15 (Prime Number Theorem). $\pi(x) \sim \frac{x}{\log x}$.
Proof. $H(t)=\vartheta\left(e^{t}\right) e^{-t}-1$ is piecewise continuous and bounded, by Lemma 16.7, and its Laplace transform extends to a holomorphic function on $\operatorname{Re}(s) \geq 0$, by Corollary 16.12. Theorem 16.13 then implies that the integral

$$
\int_{0}^{\infty} H(t) d t=\int_{0}^{\infty}\left(\vartheta\left(e^{t}\right) e^{-t}-1\right) d t
$$

converges. Replacing t with $\log x$, we see that

$$
\int_{1}^{\infty}\left(\vartheta(x) \frac{1}{x}-1\right) \frac{d x}{x}=\int_{1}^{\infty} \frac{\vartheta(x)-x}{x^{2}} d x
$$

converges. Lemma 16.8 implies $\vartheta(x) \sim x$, equivalently, $\pi(x) \sim \frac{x}{\log x}$, by Theorem 16.6.
One disadvantage of our proof is that it does not give us an error term. Using more sophisticated methods, Korobov [6] and Vinogradov [14] independently obtained the bound

$$
\pi(x)=\operatorname{Li}(x)+O\left(\frac{x}{\exp \left((\log x)^{3 / 5+o(1)}\right)}\right)
$$

in which we note that the error term is bounded by $O\left(x /(\log x)^{n}\right)$ for all n but not by $O\left(x^{1-\epsilon}\right)$ for any $\epsilon>0$. Assuming the Riemann Hypothesis, which states that the zeros of $\zeta(s)$ in the critical strip $0<\operatorname{Re}(s)<1$ all lie on the line $\operatorname{Re}(s)=\frac{1}{2}$, one can prove

$$
\pi(x)=\operatorname{Li}(x)+O\left(x^{1 / 2+o(1)}\right)
$$

More generally, if we knew that $\zeta(s)$ has no zeros in the critical strip with real part greater than c, for some $c \geq 1 / 2$ strictly less than 1 , we could prove $\pi(x)=\operatorname{Li}(x)+O\left(x^{c+o(1)}\right)$.

There thus remains a large gap between what we can prove about the distribution of prime numbers and what we believe to be true. Remarkably, other than refinements to the $o(1)$ term appearing in the Korobov-Vinogradov bound, essentially no progress has been made on this problem in the last 60 years.

16.3 A quick recap of some basic complex analysis

The complex numbers \mathbb{C} are a topological field under the distance metric $d(x, y)=|x-y|$ induced by the standard absolute value $|z|:=\sqrt{z \bar{z}}$, which is also a norm on \mathbb{C} as an \mathbb{R} vector space; all references to the topology on \mathbb{C} (open, compact, convergence, limits, etc.) are made with this understanding.

16.3.1 Glossary of terms and standard theorems

Let f and g denote complex functions defined on an open subset of \mathbb{C}.

- f is differentiable at z_{0} if $\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}$ exists.
- f is holomorphic at z_{0} if it is differentiable on an open neighborhood of z_{0}.
- f is analytic at z_{0} if there is an open neighborhood of z_{0} in which f can be defined by a power series $f(z)=\sum_{n=0} a_{n}\left(z-z_{0}\right)^{n}$; equivalently, f is infinitely differentiable and has a convergent Taylor series on an open neighborhood of z_{0}.
- Theorem: f is holomorphic at z_{0} if and only if it is analytic at z_{0}.
- Theorem: If C is a connected set containing a nonempty open set U and f and g are holomorphic on C with $f_{\mid U}=g_{\mid U}$, then $f_{\mid C}=g_{\mid C}$.
- With U and C as above, if f is holomorphic on U and g is holomorphic on C with $f_{\mid U}=g_{\mid U}$, then g is the (unique) analytic continuation of f to C and f extends to g.
- If f is holomorphic on a punctured open neighborhood of z_{0} and $|f(z)| \rightarrow \infty$ as $z \rightarrow z_{0}$ then z_{0} is a pole of f; note that the set of poles of f is necessarily a discrete set.
- f is meromorphic at z_{0} if it is holomorphic at z_{0} or has z_{0} as a pole.
- Theorem: If f is meromorphic at z_{0} then it can be defined by a Laurent series $f(z)=\sum_{n \geq n_{0}} a_{n}\left(z-z_{0}\right)^{n}$ that converges on an open punctured neighborhood of z_{0}.
- The order of vanishing $\operatorname{ord}_{z_{0}}(f)$ of a nonzero function f that is meromorphic at z_{0} is the least index n of the nonzero coefficients a_{n} in its Laurent series expansion at z_{0}. Thus z_{0} is a pole of f iff $\operatorname{ord}_{z_{0}}(f)<0$ and z_{0} is a zero of f iff $\operatorname{ord}_{z_{0}}(f)>0$.
- If $\operatorname{ord}_{z_{0}}(f)=1$ then z_{0} is a simple zero of f, and if $\operatorname{ord}_{z_{0}}(f)=-1$ it is a simple pole.
- The residue $\operatorname{res}_{z_{0}}(f)$ of a function f meromorphic at z_{0} is the coefficient a_{-1} in its Laurent series expansion $f(z)=\sum_{n \geq n_{0}} a_{n}\left(z-z_{0}\right)^{n}$ at z_{0}.
- Theorem: If z_{0} is a simple pole of f then $\operatorname{res}_{z_{0}}(f)=\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)$.
- Theorem: If f is meromorphic on a set S then so is its logarithmic derivative f^{\prime} / f, and f^{\prime} / f has only simple poles in S and $\operatorname{res}_{z_{0}}\left(f^{\prime} / f\right)=\operatorname{ord}_{z_{0}}(f)$ for all $z_{0} \in S$. In particular the poles of f^{\prime} / f are precisely the zeros and poles of f.

16.3.2 Convergence

Recall that a series $\sum_{n=1}^{\infty} a_{n}$ of complex numbers converges absolutely if the series $\sum_{n}\left|a_{n}\right|$ of nonnegative real numbers converges. An equivalent definition is that the function $a(n):=a_{n}$ is integrable with respect to the counting measure μ on the set of positive integers \mathbb{N}. Indeed, if the series is absolutely convergent then

$$
\sum_{n=1}^{\infty} a_{n}=\int_{\mathbb{N}} a(n) \mu
$$

and if the series is not absolutely convergent, the integral is not defined. Absolute convergence is effectively built-in to the definition of the Lebesgue integral, which requires that in order for the function $a(n)=x(n)+i y(n)$ to be integrable, the positive real functions $|x(n)|$ and $|y(n)|$ must both be integrable (summable), and separately computes sums of the positive and negative subsequences of $(x(n))$ and $(y(n))$ as suprema over finite subsets.

The measure-theoretic perspective has some distinct advantages. It makes it immediately clear that we may replace the index set \mathbb{N} with any set of the same cardinality, since the counting measure depends only on the cardinality of \mathbb{N}, not its ordering. We are thus free to sum over any countable index set, including \mathbb{Z}, \mathbb{Q}, any finite product of countable sets, and any countable coproduct of countable sets (such as countable direct sums of \mathbb{Z}); such sums are ubiquitous in number theory and many cannot be meaningfully interpreted as limits of partial sums in the usual sense, since this assumes that the index set is well ordered (not the case with \mathbb{Q}, for example). The measure-theoretic view makes also makes it clear that we may convert any absolutely convergent sum \cdot of the form $\sum_{X \times Y}$ into an iterated sum $\sum_{X} \sum_{Y}$ (or vice versa), via Fubini's theorem.

We say that an infinite product $\prod_{n} a_{n}$ of nonzero complex numbers is absolutely convergent when the sum $\sum_{n} \log a_{n}$ is, in which case $\prod_{n} a_{n}:=\exp \left(\sum_{n} \log a_{n}\right) .{ }^{7}$ This implies that an absolutely convergent product cannot converge to zero, and the sequence (a_{n}) must converge to 1 (no matter how we order the a_{n}). All of our remarks above about absolutely convergent series apply to absolutely convergent products as well.

A series or product of complex functions $f_{n}(z)$ is absolutely convergent on S if the series or product of complex numbers $f_{n}\left(z_{0}\right)$ is absolutely convergent for all $z_{0} \in S$.

Definition 16.16. A sequence of complex functions $\left(f_{n}\right)$ converges uniformly on S if there is a function f such that for every $\epsilon>0$ there is an integer N for which $\sup _{z \in S}\left|f_{n}(z)-f(z)\right|<\epsilon$ for all $n \geq N$. The sequence $\left(f_{n}\right)$ converges locally uniformly on S if every $z_{0} \in S$ has an open neighborhood U for which $\left(f_{n}\right)$ converges uniformly on $U \cap S$. When applied to a series of functions these terms refer to the sequence of partial sums.

Because \mathbb{C} is locally compact, locally uniform convergence is the same thing as compact convergence: a sequence of functions converges locally uniformly on S if and only if it converges uniformly on every compact subset of S.

Theorem 16.17. A sequence or series of holomorphic functions f_{n} that converges locally uniformly on an open set U converges to a holomorphic function f on U, and the sequence or series of derivatives f_{n}^{\prime} then converges locally uniformly to f^{\prime} (and if none of the f_{n} has a zero in U and $f \neq 0$, then f has no zeros in U).

Proof. See [3, Thm. III.1.3] and [3, Thm. III.7.2].
Definition 16.18. A series of complex functions $\sum_{n} f_{n}(z)$ converges normally on a set S if $\sum_{n}\left\|f_{n}\right\|:=\sum_{n} \sup _{z \in S}\left|f_{n}(z)\right|$ converges. The series $\sum_{n} f_{n}(z)$ converges locally normally on S if every $z_{0} \in S$ has an open neighborhood U on which $\sum_{n} f_{n}(z)$ converges normally.

Theorem 16.19 (Weierstrass M-TEST). Every locally normally convergent series of functions converges absolutely and locally uniformly. Moreover, a series $\sum_{n} f_{n}$ of holomorphic functions on S that converges locally normally converges to a holomorphic function f on S, and then $\sum_{n} f_{n}^{\prime}$ converges locally normally to f^{\prime}.

[^6]Proof. See [3, Thm. III.1.6].
Remark 16.20. To show a series $\sum_{n} f_{n}$ is locally normally convergent on a set S amounts to proving that for every $z_{0} \in S$ there is an open neighborhood U of z_{0} and a sequence of real numbers $\left(M_{n}\right)$ such that $\left|f_{n}(z)\right| \leq M_{n}$ for $z \in U \cap S$ and $\sum_{n} M_{n}<\infty$, whence the term " M-test".

16.3.3 Contour integration

We shall restrict our attention to integrals along contours defined by piecewise-smooth parameterized curves; this covers all the cases we shall need.

Definition 16.21. A parameterized curve is a continuous function $\gamma:[a, b] \rightarrow \mathbb{C}$ whose domain is a compact interval $[a, b] \subseteq \mathbb{R}$. We say that γ is smooth if it has a continuous nonzero derivative on $[a, b]$, and piecewise-smooth if $[a, b]$ can be partitioned into finitely many subintervals on which the restriction of γ is smooth. We say that γ is closed if $\gamma(a)=\gamma(b)$, and simple if it is injective on $[a, b)$ and $(a, b]$. Henceforth we will use the term curve to refer to any piecewise-smooth parameterized curve γ, or to its oriented image of in the complex plane (directed from $\gamma(a)$ to $\gamma(b)$), which we may also denote γ.

Definition 16.22. Let $f: \Omega \rightarrow \mathbb{C}$ be a continuous function and let γ be a curve in Ω. We define the contour integral

$$
\int_{\gamma} f(z) d z:=\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) d t
$$

whenever the integral on the RHS (which is defined as a Riemann sum in the usual way) converges. Whether $\int_{\gamma} f(z) d z$ converges, and if so, to what value, does not depend on the parameterization of γ : if γ^{\prime} is another parameterized curve with the same (oriented) image as γ, then $\int_{\gamma^{\prime}} f(z) d z=\int_{\gamma} f(z) d z$.

We have the following analog of the fundamental theorem of calculus.
Theorem 16.23. Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be a curve in an open set Ω and let $f: \Omega \rightarrow \mathbb{C}$ be a holomorphic function Then

$$
\int_{\gamma} f^{\prime}(z) d z=f(\gamma(b))-f(\gamma(a)) .
$$

Proof. See [2, Prop. 4.12].
Recall that the Jordan curve theorem implies that every simple closed curve γ partitions \mathbb{C} into two components, one of which we may unambiguously designate as the interior (the one on the left as we travel along our oriented curve). We say that γ is contained in an open set U if both γ and its interior lie in U. The interior of γ is a simply connected set, and if an open set U contains γ then it contains a simply connected open set that contains γ.

Theorem 16.24 (Cauchy's Theorem). Let U be an open set containing a simple closed curve γ. For any function f that is holomorphic on U we have

$$
\int_{\gamma} f(z) d z=0
$$

Proof. See [2, Thm. 8.6] (we can restrict U to a simply connected set).
Cauchy's theorem generalizes to meromorphic functions.
Theorem 16.25 (Cauchy Residue Formula). Let U be an open set containing a simple closed curve γ. Let f be a function that is meromorphic on U, let z_{1}, \ldots, z_{n} be the poles of f that lie in the interior of γ, and suppose that no pole of f lies on γ. Then

$$
\int_{\gamma} f(z) d z=2 \pi i \sum_{i=1}^{n} \operatorname{res}_{z_{i}}(f) .
$$

Proof. See [2, Thm. 10.5] (we can restrict U to a simply connected set).
To see where the $2 \pi i$ comes from, consider $\int_{\gamma} \frac{d z}{z}$ with $\gamma(t)=e^{i t}$ for $t \in[0,2 \pi]$. In general one weights residues by a corresponding winding number, but the winding number of a simple closed curve about a point in its interior is always 1 .

Theorem 16.26 (Cauchy's Integral Formula). Let U be an open set containing a simple closed curve γ. For any function f holomorphic on U and a in the interior of γ,

$$
f(a)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{z-a} d z
$$

Proof. Apply Cauchy's residue formula to $g(z)=f(z) /(z-a)$; the only poles of g in the interior of γ are a simple pole at $z=a$ with $\operatorname{res}_{a}(g)=f(a)$.

Cauchy's residue formula can also be used to recover the coefficients $f^{(n)}(a) / n$! appearing in the Laurent series expansion of a meromorphic function at a (apply it to $f(z) /(z-a)^{n+1}$). One of many useful consequences of this is Liouville's theorem, which can be proved by showing that the Laurent series expansion of a bounded holomorphic function on \mathbb{C} about any point has only one nonzero coefficient (the constant coefficient).

Theorem 16.27 (LIOUVILLE's THEOREM). Bounded entire functions are constant.
Proof. See [2, Thm. 5.10].
We also have the following converse of Cauchy's theorem.
Theorem 16.28 (MORERA's Theorem). Let f be a continuous function and on an open set U, and suppose that for every simple closed curve γ contained in U we have

$$
\int_{\gamma} f(z) d z=0 .
$$

Then f is holomorphic on U.
Proof. See [3, Thm. II.3.5].

References

[1] Lars V. Ahlfors, Complex analysis: an introduction to the theory of analytic functions of one complex variable, 3rd edition, McGraw-Hill, 1979.
[2] Joseph Bak and Donald J. Newman, Complex analysis, Springer, 2010.
[3] Rolf Busam and Eberhard Freitag, Complex analysis, 2nd edition, Springer 2009.
[4] Paul Erdös, On a new method in elementary number theory which leads to an elementary proof of the prime number theorem, Proc. Nat. Acad. Scis. U.S.A. 35 (1949), 373-384.
[5] Jacques Hadamard, Sur la distribution des zéros de la function $\zeta(s)$ et ses conséquences arithmétique, Bull. Soc. Math. France 24 (1896), 199-220.
[6] Nikolai M. Korobov, Estimates for trigonometric sums and their applications, Uspechi Mat. Nauk 13 (1958), 185-192.
[7] Serge Lange, Complex analysis, 4th edition, Springer, 1985.
[8] David J. Newman, Simple analytic proof of the Prime Number Theorem, Amer. Math. Monthly 87 (1980), 693-696.
[9] Charles Jean de la Vallé Poussin, Reserches analytiques sur la théorie des nombres premiers, Ann. Soc. Sci. Bruxelles 20 (1896), 183-256.
[10] Bernhard Riemann, Über die Anzahl der Primzahlen unter einer gegebenen Grösse, Monatsberichte der Berliner Akademie, 1859.
[11] Alte Selberg, An elementary proof of the Prime-Number Theorem, Ann. Math. 50 (1949), 305-313.
[12] Elias M. Stein and Rami Shakarchi, Complex analysis, Princeton University Press, 2003.
[13] Alfred Tauber, Ein Satz aus der Theorie der unendlichen Reihen, Monatsh f. Mathematik und Physik 8 (1897), 273-277.
[14] Ivan M. Vinogradov, A new estimate of the function $\zeta(1+i t)$, Izv. Akad. Nauk SSSR. Ser. Mat. 22 (1958), 161-164.
[15] Don Zagier, Newman's short proof of the Prime Number Theorem, Amer. Math. Monthly 104 (1997), 705-708.

MIT OpenCourseWare
https://ocw.mit.edu

18.785 Number Theory I

Fall 2021

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ Those familiar with this material should still glance at $\S 16.3 .2$ which touches on some convergence issues that are particularly relevant to number theoretic applications.

[^1]: ${ }^{2}$ If this lemma strikes you as pulling a rabbit out of a hat, well, it is. For a slight variation, see [15, IV], which uses an alternative approach due to Hadamard.

[^2]: ${ }^{3}$ More accurate in the sense that $|\pi(x)-\operatorname{Li}(x)|$ grows more slowly than $\left|\pi(x)-\frac{x}{\log x}\right|$ as $x \rightarrow \infty$.

[^3]: ${ }^{4}$ As with most Russian names, there is no canonical way to write Chebyshev in the latin alphabet and one finds many variations in the literature; in English, the spelling used here appears to be the most common.

[^4]: ${ }^{5}$ The equality sign in the big- O notation $f(x)=O(g(x))$ is a standard abuse of notation; it simply means $\lim \sup _{x \rightarrow \infty}|f(x)| /|g(x)|<\infty$ (and nothing more). In more complicated equalities a big- O expression should be interpreted as a set of functions, one of which makes the equality true, for example, $\sum_{n \geq 1} \frac{1}{n}=\log n+O(1)$.

[^5]: ${ }^{6}$ As is standard when computing logarithmic derivatives, we are taking the principal branch of the complex $\operatorname{logarithm}$ and can safely ignore the negative real axis where it is not defined since we are assuming $\operatorname{Re}(s)>1$.

[^6]: ${ }^{7}$ In this definition we use the principal branch of $\log z:=\log |z|+i \operatorname{Arg} z$ with $\operatorname{Arg} z \in(-\pi, \pi)$.

