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2 Localization and Dedekind domains

After a brief review of some commutative algebra background on localizations, in this lecture
we begin our study of Dedekind domains, which are commutative rings that play a key role
in algebraic number theory and arithmetic geometry (named after Richard Dedekind).

2.1 Localization of rings

Let A be a commutative ring (unital, as always), and let S be a multiplicative subset of A;
this means S is closed under finite products (including the empty product, so 1 ∈ S), and S
does not contain zero. The localization of A with respect to S is a ring S−1A equipped with
a ring homomorphism ι : A → S−1A that maps S into (S−1A)× and satisfies the following
universal property: if ϕ : A → B is a ring homomorphism with ϕ(S) ⊆ B× then there is a
unique ring homomorphism S−1A→ B that makes the following diagram commute:

A B

S−1A

← →ϕ

←

→
ι ← →∃!

and one says that ϕ factors uniquely through S−1A (via ι). As usual with universal prop-
erties, this guarantees that S−1A is unique (hence well-defined), provided that it exists. To
prove existence we construct S−1A as the quotient of A×S modulo the equivalence relation

(a, s) ∼ (b, t)⇔ ∃u ∈ S such that (at− bs)u = 0. (1)

We then use a/s to denote the equivalence class of (a, s) and define ι(a) := a/1; one can
easily verify that S−1A is a ring with additive identity 0/1 and multiplicative identity 1/1,
and that ι : A→ S−1A is a ring homomorphism. If s is invertible in A we can view a/s either
as the element as−1 of A or the equivalence class of (a, s) in S−1A; we have (a, s) ∼ (a/s, 1),
since (a · 1− a/s · s) · 1 = 0, so this notation should not cause any confusion. For s ∈ S we
have ι(s)−1 = 1/s, since (s/1)(1/s) = s/s = 1/1 = 1, thus ι(S) ⊆ (S−1A)×.

If ϕ : A → B is a ring homomorphism with ϕ(S) ⊆ B×, then ϕ = π ◦ ι, where π is
defined by π(a/s) := ϕ(a)ϕ(s)−1. If π : S−1A→ B is any ring homomorphism that satisfies
ϕ = π ◦ ι, then ϕ(a)ϕ(s)−1 = π(ι(a))π(ι(s))−1 = π(ι(a)ι(s)−1) = π((a/1)(1/s)) = π(a/s),
so π is unique.

In the case of interest to us, A is actually an integral domain, in which case (a, s) ∼ (b, t)
if and only if at− bs = 0 (we can always take u = 1 in the equivalence relation (1) above),
and we can then identify S−1A with a subring of the fraction field of A (which we note is
the localization of A with respect to S = A 6=0), and if T is a multiplicative subset A that
contains S, then S−1A ⊆ T−1A.

When A is an integral domain the map ι : A→ S−1A is injective, allowing us to identify
A with its image ι(A) ⊆ S−1A (in general, ι is injective if and only if S contains no zero
divisors). When A is an integral domain we may thus view S−1A as an intermediate ring
that lies between A and its fraction field: A ⊆ S−1A ⊆ FracA.

2.2 Ideals in localizations of rings

If ϕ : A → B is a ring homomorphism and b is a B-ideal, then ϕ−1(b) is an A-ideal called
the contraction of b to A and sometimes denoted bc; when A is a subring of B and ϕ is
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the inclusion map we simply have bc = b ∩ A. If a is an A-ideal, in general ϕ(a) is not a
B-ideal; but we can instead consider the B-ideal generated by ϕ(a), the extension of a to B,
sometimes denoted ae.

In the case of interest to us, A is an integral domain, B = S−1A is the localization of A
with respect to some multiplicative set S, and ϕ = ι is injective, so we view A as a subring
of B. We then have

ae = aB := (ab : a ∈ a, b ∈ B). (2)

We clearly have a ⊆ ϕ−1((ϕ(a))) = aec and bce = (ϕ(ϕ−1(b))) ⊆ b; one might ask whether
these inclusions are equalities. In general the first is not: if B = S−1A and a ∩ S 6= ∅ then
ae = aB = B and aec = B ∩ A are both unit ideals, but we may still have a ( A. However
when B = S−1A the second inclusion is an equality; see [1, Prop. 11.19] or [2, Prop. 3.11]
for a short proof. We also note the following theorem.

Theorem 2.1. Let S be a multiplicative subset of an integral domain A. There is a one-
to-one correspondence between the prime ideals of S−1A and the primes ideals of A that do
not intersect S given by the inverse maps q 7→ q ∩A and p 7→ pS−1A.

Proof. See [1, Cor. 11.20] or [2, Prop. 3.11.iv].

Remark 2.2. An immediate consequence of (2) is that if a1, . . . , an ∈ A generate a as an
A-ideal, then they also generate ae = aB as a B-ideal. As noted above, when B = S−1A
we have b = bce, so every B-ideal is of the form ae (take a = bc). It follows that if A is
noetherian then so are all its localizations, and if A is a PID then so are all of its localizations.

An important special case of localization occurs when p is a prime ideal in an integral
domain A, and S = A − p (the complement of the set p in the set A). In this case it is
customary to denote S−1A by

Ap := {a/b : a ∈ A, b 6∈ p}/ ∼, (3)

and call it the localization of A at p. The prime ideals of Ap are then in bijection with the
prime ideals of A that lie in p. It follows that pAp is the unique maximal ideal of Ap and
Ap is therefore a local ring (whence the term localization).

Warning 2.3. The notation in (3) makes it tempting to assume that if a/b is an element
of FracA, then a/b ∈ Ap if and only if b 6∈ p. This is not necessarily true! As an element
of FracA, the notation “a/b" represents an equivalence class; if a/b = a′/b′ with b′ 6∈ Ap,
then in fact a/b = a′/b′ ∈ Ap. As a trivial example, take A = Z, p = (3), a/b = 9/3 and
a′/b′ = 3/1. You may object that we should write a/b in lowest terms, but when A is not a
unique factorization domain it is not clear what this means.

Example 2.4. For a field k, let A = k[x] and p = (x− 2). Then

Ap = {f ∈ k(x) : f is defined at 2}.

The ring A is a PID, so Ap is a PID with a unique nonzero maximal ideal (the ideal pAp),
hence a DVR. Its maximal ideal is

pAp = {f ∈ k(x) : f(2) = 0}.

The valuation on the field k(x) = FracA corresponding to the valuation ring Ap measures
the order of vanishing of functions f ∈ k(x) at 2. The residue field is Ap/pAp ' k, and the
quotient map Ap � Ap/pAp sends f to f(2).
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Example 2.5. Let p ∈ Z be a prime. Then Z(p) = {a/b : a, b ∈ Z, p - b}. As in the previous
example, Z is a PID and Z(p) is a DVR; the valuation on Q is the p-adic valuation. The
residue field is Z(p)/pZ(p) ' Fp and the quotient map Z(p) � Fp is reduction modulo p.

2.3 Localization of modules

The concept of localization generalizes immediately to modules. As above, let A be a
commutative ring, let S a multiplicative subset of A, and let M be an A-module. The
localization S−1M of M with respect to S is an S−1A-module equipped with an A-module
homomorphism ι : M → S−1M with the universal property that if N is an S−1A-module
and ϕ : M → N is an A-module homomorphism, then ϕ factors uniquely through S−1M
(via ι). Note that in this definition we are viewing S−1A-modules as A-modules via the
canonical homomorphism A→ S−1A that is part of the definition of S−1A. Our definition
of S−1M reduces to the definition of S−1A in the case M = A.

The explicit construction of S−1M is exactly the same as S−1A, one takes the quotient
of the S−1A-module M × S modulo the same equivalence relation as in (1):

(a, s) ∼ (b, t)⇔ ∃u ∈ S such that (at− bs)u = 0,

where a and b now denote elements of M , and ι(a) := a/1 as before. Alternatively, one can
define S−1M :=M ⊗A S−1A (see [2, Prop. 3.5] for a proof that this is equivalent). In other
words, S−1M is the base change of M from A to S−1A; we will discuss base change more
generally in later lectures.

The map ι : M → S−1M is injective if and only if the map M
×s−→ M is injective for

every s ∈ S. This is a strong condition that does not hold in general, even when A is an
integral domain (the annihilator of M may be non-trivial), but it applies to all the cases we
care about. In particular, if A lies in a field K (in which case A must be an integral domain
whose fraction field lies in K) and M is an A-module that is contained in a K-vector space.
In this setting multiplication by any nonzero s ∈ A is injective and we can view M as an
A-submodule of any of its localizations S−1M .

We will mostly be interested in the case S = A − p, where p is a prime ideal of A, in
which case we write Mp for S−1M , just as we write Ap for S−1A.

Proposition 2.6. Let A be a subring of a field K, and let M be an A-module contained in
a K-vector space V (equivalently, for which the map M →M ⊗A K is injective).1 Then

M =
⋂
m

Mm =
⋂
p

Mp,

where m ranges over the maximal ideals of A, p ranges over the prime ideals of A, and the
intersections take place in V .

Proof. The fact that M ⊆
⋂

mMm is immediate. Now suppose x ∈
⋂

mMm and consider the
A-ideal a := {a ∈ A : ax ∈ M}. For each maximal ideal m we can write x = m/s for some
m ∈ M and s ∈ A − m; we then have sx ∈ M and s ∈ a, but s 6∈ m, so a 6⊆ m. It follows
that a must be the unit ideal, so 1 ∈ a and x = 1 · x ∈M ; thus ∩mMm ⊆M .

We now note that eachMp contains someMm (since each p is contained in some m), and
every maximal ideal is prime, so ∩mMm = ∩pMp.

1The image is a tensor product of A-modules that is also a K-vector space. We need the natural map to
be injective in order to embed M in it. Note that V necessarily contains a subspace isomorphic to M ⊗A K.
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An important special case of this proposition occurs when K = FracA and V = K, in
which case M is an A-submodule of K. Every ideal I of A is an A-submodule of K, and
can thus be localized as above. The localization of I (as an A-module) at a prime ideal p
of A is the same thing as the extension of I (as an A-ideal) to the localization of A at p. In
other words,

Ip = {i/s : i ∈ I, s ∈ A− p} = {ia/s : i ∈ I, a ∈ A, s ∈ A− p} = IAp.

We also have the following corollary of Proposition 2.6.

Corollary 2.7. Let A be an integral domain. Every ideal I of A (including I = A) is equal
to the intersection of its localizations at the maximal ideals of A, and also to the intersection
of its localizations at the prime ideals of A.

Example 2.8. If A = Z then Z =
⋂
p Z(p) in Q.

Proposition 2.6 and Corollary 2.7 are powerful tools, because they allow us work in local
rings (rings with just one maximal ideal), which often simplifies matters considerably. For
example, to prove that an ideal I in an integral domain A satisfies a certain property, it is
enough to show that this property holds for all its localizations Ip at prime ideals p and is
preserved under intersections. We now want to consider rings A that satisfy some further
assumptions that make its localizations become even easier to work with.

2.4 Dedekind domains

Proposition 2.9. Let A be a noetherian domain. The following are equivalent:

(i) For every nonzero prime ideal p ⊂ A the local ring Ap is a DVR.

(ii) The ring A is integrally closed and dimA ≤ 1.

Proof. If A is a field then (i) and (ii) both hold, so let us assume that A is not a field, and
put K := FracA. We first show that (i) implies (ii). Recall that dimA is the supremum
of the length of all chains of prime ideals. It follows from Theorem 2.1 that every chain
of prime ideals (0) ( p1 ( · · · ( pn extends to a corresponding chain in Apn of the same
length; conversely, every chain in Ap contracts to a chain in A of the same length. Thus

dimA = sup{dimAp : p ∈ SpecA} = 1,

since every Ap is either a DVR (p 6= (0)), in which case dimAp = 1, or a field (p = (0)),
in which case dimAp = 0. Any x ∈ K that is integral over A is integral over every Ap

(since they all contain A), and the Ap are integrally closed, since they are DVRs or fields.
So x ∈

⋂
pAp = A, and therefore A is integrally closed, which shows (ii).

To show that (ii) implies (i), we first show that the following properties are all inherited
by localizations of a ring: (1) no zero divisors, (2) noetherian, (3) dimension at most one,
(4) integrally closed. (1) is obvious, (2) was noted in Remark 2.2, and (3) follows from
Theorem 2.1 since, as argued above, we have dimAp ≤ dimA. To show (4), suppose x ∈ K
is integral over Ap. Then

xn +
an−1
sn−1

xn−1 + · · ·+ a1
s1
x+

a0
s0

= 0
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for some a0, . . . , an−1 ∈ A and s0, . . . , sn−1 ∈ A − p. Multiplying both sides by sn, where
s = s0 · · · sn−1 ∈ S, shows that sx is integral over A, hence an element of A, since A is
integrally closed. But then sx/s = x is an element of Ap, so Ap is integrally closed as
claimed.

Thus (ii) implies that every Ap is an integrally closed noetherian local domain of dimen-
sion at most 1, and for p 6= (0) we must have dimAp = 1. Thus for every nonzero prime ideal
p, the ring Ap is an integrally closed noetherian local domain of dimension 1, and therefore
a DVR, by Theorem 1.16.

Definition 2.10. A noetherian domain satisfying either of the equivalent properties of
Proposition 2.9 is called a Dedekind domain.

Corollary 2.11. Every PID is a Dedekind domain. In particular, Z is a Dedekind domain,
as is k[x] for any field k.

Remark 2.12. Every PID is both a UFD and a Dedekind domain. Not every UFD is a
Dedekind domain (consider k[x, y], for any field k), and not every Dedekind domain is a
UFD (consider Z[

√
−13], in which (1 +

√
−13)(1 −

√
−13) = 2 · 7 = 14). However (as we

shall see), every ring that is both a UFD and a Dedekind domain is a PID.

One of our first goals in this course is to prove that ring of integers of number fields
and coordinate rings of global function fields are Dedekind domains. More precisely, we will
prove that if A is a Dedekind domain and L is a finite separable extension of its fraction
field, then the integral closure of A in L is a Dedekind domain. This includes the two main
cases of interest to us, in which either A = Z and L is a number field, or A = Fq[t] and L is
a global function field. Recall from Lecture 1 that number fields and global function fields
are the two types of global fields (as we will prove in later lectures).

2.5 Fractional ideals

Throughout this subsection, A is a noetherian domain (not necessarily a Dedekind domain)
and K is its fraction field.

Definition 2.13. A fractional ideal of a noetherian domain A is a finitely generated A-
submodule of its fraction field.

Fractional ideals generalize the notion of an ideal: when A is noetherian the ideals of
A are precisely the finitely generated A-submodules of A, and when A is also a domain we
can extend this notion to its fraction field. Every ideal of A is also a fractional ideal of A,
but fractional ideals are typically not ideals because they need not be contained in A. Some
authors use the term integral ideal to distinguish the fractional ideals that lie in A (and are
thus ideals) but we will not use this terminology.

Lemma 2.14. Let A be a noetherian domain with fraction field K, and let I ⊆ K be an
A-module. Then I is finitely generated if and only if aI ⊆ A for some nonzero a ∈ A.

Proof. For the forward implication, if r1/s1, . . . , rn/sn generate I as an A-module, then
aI ⊆ A for a = s1 · · · sn. Conversely, if aI ⊆ A, then aI is an ideal, hence finitely generated
(since A is noetherian), and if a1, . . . , an generate aI then a1/a, . . . , an/a generate I.
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Remark 2.15. Lemma 2.14 gives an alternative definition of fractional ideals that can be
extended to domains that are not necessarily noetherian; they are A-submodules I of K for
which there exists a nonzero r ∈ A such that rI ⊆ A. When A is noetherian this coincides
with our definition above.

Corollary 2.16. Every fractional ideal of A can be written in the form 1
aI, for some nonzero

a ∈ A and ideal I.

Definition 2.17. A fractional ideal of A is principal if it is generated by one element, that
is, it has the form xA for some x ∈ K. We will also use the notation (x) := xA to denote
the principal fractional ideal generated by x ∈ K.

As with ideals, we can add and multiply fractional ideals:

I + J := (i+ j : i ∈ I, j ∈ J), IJ := (ij : i ∈ I, j ∈ J).

Here the notation (S) means the A-module generated by S ⊆ K. As with ideals, we
actually have I + J = {i+ j : i ∈ I, j ∈ J}, but the ideal IJ is typically not the same as set
{ij : i ∈ I, j ∈ J}, it consists of all finite sums of elements in this set. We also have a new
operation, corresponding to division. For any fractional ideals I, J with J nonzero, the set

(I : J) := {x ∈ K : xJ ⊆ I}

is called a colon ideal. Some texts refer to (I : J) as the ideal quotient of I by J , but note
that it is not a quotient of A-modules (for example, (Z : Z) = Z but Z/Z = {0}).

We do not assume I ⊆ J (or J ⊆ I), the definition makes sense for any fractional
ideals I and J with J nonzero.2 If I = (x) and J = (y) are principal fractional ideals then
(I : J) = (x/y), so colon ideals can be viewed as a generalization of division in K×.

Lemma 2.18. Let I and J be fractional ideals of a noetherian domain A with J nonzero.
Then (I : J) is a fractional ideal of A.

Proof. It is clear from the definition that (I : J) is closed under addition and multiplication
by elements of A (since I is), so (I : J) is an A-module of the fraction field of A. To
show that (I : J) is finitely generated, we first suppose that I, J ⊆ A are ideals. For
any nonzero j ∈ J ⊆ A we have j(I : J) ⊆ I ⊆ A, so (I : J) is finitely generated,
by Lemma 2.14. For the general case, choose a and b so that aI ⊆ A and bJ ⊆ A via
Lemma 2.14. Then (I : J) = (abI : abJ) with abI, abJ ⊆ A, which we have already shown
is finitely generated.

Definition 2.19. A fractional ideal I is invertible if IJ = A for some fractional ideal J .

Inverses are unique when they exist: if IJ = A = IJ ′ then J = JA = JIJ ′ = AJ ′ = J ′.
We may use I−1 to denote the inverse of a fractional ideal I when it exists.

Lemma 2.20. A fractional ideal I of A is invertible if and only if I(A : I) = A (in which
case (A : I) is its inverse).

Before proving the lemma, note that I(A : I) ⊆ A always holds, since for y ∈ I and
x ∈ (A : I) we have xy ∈ xI ⊆ A, by the definition of (A : I). The lemma states that this
inclusion is an equality precisely when I is invertible.

2The definition still makes sense when J is the zero ideal, but (I : (0)) = K will typically not be finitely
generated as an A-module, hence not a fractional ideal.
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Proof. Suppose I is invertible, with IJ = A. Then jI ⊆ A for all j ∈ J , so J ⊆ (A : I), and
A = IJ ⊆ I(A : I) ⊆ A, so I(A : I) = A.

In the next lecture we will prove that in a Dedekind domain every nonzero fractional
ideal is invertible, but let us first note that this is not true in general.

Example 2.21. Consider the subring A := Z+2iZ of the Gaussian integers (with i2 = −1).
The set I := 2Z[i] is a non-invertible A-ideal (even though it is an invertible Z[i]-ideal);
indeed, we have (A : I) = Z[i] and I(A : I) = 2Z[i] ( A.

2.6 Invertible fractional ideals and the ideal class group

In this section A is a noetherian domain (not necessarily a Dedekind domain) and K is its
fraction field. Recall that a fractional ideal of A is a finitely generated A-submodule of K,
and if I and J are fractional ideals, so is the colon ideal

(I : J) := {x ∈ K : xJ ⊆ I},

and we say that a fractional ideal I is invertible if IJ = A for some fractional ideal J . The
definition of (A : I) implies I(A : I) ⊆ A, and Lemma 2.20 implies that I is invertible
precisely when this inclusion is an equality, in which case the inverse of I is (A : I).

Ideal multiplication is commutative and associative, thus the set of nonzero fractional
ideals of a noetherian domain form an abelian monoid under multiplication with A = (1) as
the identity. It follows that the subset of invertible fractional ideals is an abelian group.

Definition 2.22. The ideal group IA of a noetherian domain A is the group of invertible
fractional ideals. Note that, despite the name, elements of IA need not be ideals.

Every nonzero principal fractional ideal (x) is invertible (since (x)−1 = (x−1)), and a
product of principal fractional ideals is principal (since (x)(y) = (xy)), as is the unit ideal
(1), thus the set of nonzero principal fractional ideals PA is a subgroup of IA.

Definition 2.23. Let A be a noetherian domain. The quotient cl(A) := IA/PA is the ideal
class group of A; it is also called the Picard group of A and denoted Pic(A).3

Example 2.24. If A is a DVR with uniformizer π then its nonzero fractional ideals are the
principal fractional ideals (πn) with n ∈ Z (including n ≤ 0). We have (πm)(πn) = (πm+n),
thus the ideal group of A is isomorphic to Z (under addition). In this case PA = IA and
the ideal class group cl(A) is trivial.

Remark 2.25. A Dedekind domain is a UFD if and only if its ideal class group is trivial
(we will prove this in the next lecture), thus cl(A) may be viewed as a measure of how
far A is from being a UFD. More generally, the ideal class group of an integrally closed
noetherian domain A is trivial when A is a UFD, and the converse holds if one replaces
the ideal class group with the divisor class group. One defines a divisor as an equivalence
class of fractional ideals modulo the equivalence relation I ∼ J ⇔ (A : I) = (A : J), and
in an integrally closed noetherian domain A (or more generally, a Krull domain), the set

3In general, the Picard group of a commutative ring A as the group of isomorphism classes of A-modules
that are invertible under tensor product (equivalently, projective modules of rank one). When A is a
noetherian domain, the Picard group of A is canonically isomorphic to the ideal class group of A and the
two notions may be used interchangeably.
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of divisors forms a group that contains principal divisors as a subgroup; the divisor class
group is defined as the quotient, and it is trivial if and only if A is a UFD (this holds more
generally for any Krull domain, see [5, Thm. 8.34]). In a Dedekind domain, fractional ideals
are always distinct as divisors and every nonzero fractional ideal is invertible, so the ideal
class group and divisor class group coincide.4
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