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20 The Kronecker-Weber theorem

In the previous lecture we established a relationship between finite groups of Dirichlet char-
acters and subfields of cyclotomic fields. Specifically, we showed that there is a one-to-
one-correspondence between finite groups H of primitive Dirichlet characters of conductor
dividing m and subfields K of Q(ζm) under which H can be viewed as the character group
of the finite abelian group Gal(K/Q) and the Dedekind zeta function of K factors as

ζK(s) =
∏
χ∈H

L(s, χ).

Now suppose we are given an arbitrary finite abelian extension K/Q. Does the character
group of Gal(K/Q) correspond to a group of Dirichlet characters, and can we then factor
the Dedekind zeta function ζK(s) as a product of Dirichlet L-functions?

The answer is yes! This is a consequence of the Kronecker-Weber theorem, which states
that every finite abelian extension of Q lies in a cyclotomic field. This theorem was first
stated in 1853 by Kronecker [2], who provided a partial proof for extensions of odd degree.
Weber [7] published a proof 1886 that was believed to address the remaining cases; in fact
Weber’s proof contains some gaps (as noted in [5]), but in any case an alternative proof was
given a few years later by Hilbert [1]. The proof we present here is adapted from [6, Ch. 14]

20.1 Local and global Kronecker-Weber theorems

We now state the (global) Kronecker-Weber theorem.

Theorem 20.1. Every finite abelian extension of Q lies in a cyclotomic field Q(ζm).

There is also a local version.

Theorem 20.2. Every finite abelian extension of Qp lies in a cyclotomic field Qp(ζm).

We first show that the local version implies the global one.

Proposition 20.3. The local Kronecker-Weber theorem implies the global Kronecker-Weber
theorem.

Proof. Let K/Q be a finite abelian extension. For each ramified prime p of Q, pick a prime
p|p and let Kp be the completion of K at p (the fact that K/Q is Galois means that every
p|p is ramified with the same ramification index; it makes no difference which p we pick). We
have Gal(Kp/Qp) ' Dp ⊆ Gal(K/Q), by Theorem 11.23, so Kp is an abelian extension of
Qp and the local Kronecker-Weber theorem implies that Kp ⊆ Qp(ζmp) for some mp ∈ Z≥1.
Let np := vp(mp), put m :=

∏
p p

np (this is a finite product), and let L = K(ζm). We will
show L = Q(ζm), which implies K ⊆ Q(ζm).

The field L = K · Q(ζm) is a compositum of Galois extensions of Q, and is therefore
Galois over Q with Gal(L/Q) isomorphic to a subgroup of Gal(K/Q)×Gal(Q(ζm)/Q), hence
abelian (as recalled below, the Galois group of a compositum K1 · · ·Kr of Galois extensions
Ki/F is isomorphic to a subgroup of the direct product of the Gal(Ki/F )). Let q be a
prime of L lying above a ramified prime p|p; as above, the completion Lq of L at q is a finite
abelian extension of Qp, since L/Q is finite abelian, and we have Lq = Kp · Qp(ζm). Let
Fq be the maximal unramified extension of Qp in Lq. Then Lq/Fq is totally ramified and
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Gal(Lq/Fq) is isomorphic to the inertia group Ip := Iq ⊆ Gal(L/Q), by Theorem 11.23 (the
Iq all coincide because L/Q is abelian).

It follows from Corollary 10.18 that Kp ⊆ Fq(ζpnp ), since Kp ⊆ Qp(ζmp) and Qp(ζmp/p
np )

is unramified, and that Lq = Fq(ζpnp ), since Qp(ζm/pnp ) is unramified. Moreover, we have
Fq ∩Qp(ζpnp ) = Qp, since Qp(ζpnp )/Qp is totally ramified, and it follows that

Ip ' Gal(Lq/Fq) ' Gal(Qp(ζpnp )/Qp) ' (Z/pnpZ)×.

Now let I be the group generated by the union of the groups Ip ⊆ Gal(L/Q) for p|m. Since
Gal(L/Q) is abelian, we have I ⊆

∏
Ip, thus

#I ≤
∏
p|m

#Ip =
∏
p|m

#(Z/pnpZ)× =
∏
p|m

φ(pnp) = φ(m) = [Q(ζm) : Q].

Each inertia field LIp is unramified at p (see Proposition 7.12), as is LI ⊆ LIp . So LI/Q is
unramified, and therefore LI = Q, by Corollary 14.27. Thus

[L : Q] = [L : LI ] = #I ≤ [Q(ζm) : Q],

and Q(ζm) ⊆ L, so L = Q(ζm) as claimed and K ⊆ L = Q(ζm).

To prove the local Kronecker-Weber theorem we first reduce to the case of cyclic exten-
sions of prime-power degree. Recall that if L1 and L2 are two Galois extensions of a field K
then their compositum L := L1L2 is Galois over K with Galois group

Gal(L/K) ' {(σ1, σ2) : σ1|L1∩L2 = σ2|L1∩L2} ⊆ Gal(L1/K)×Gal(L2/K).

The inclusion on the RHS is an equality if and only if L1 ∩ L2 = K. Conversely, if
Gal(L/K) ' H1 × H2 then by defining L2 := LH1 and L1 := LH2 we have L = L1L2

with L1 ∩ L2 = K, and Gal(L1/K) ' H1 and Gal(L2/K) ' H2.
It follows from the structure theorem for finite abelian groups that we may decompose

any finite abelian extension L/K into a compositum L = L1 · · ·Ln of linearly disjoint cyclic
extensions Li/K of prime-power degree. If each Li lies in a cyclotomic extension K(ζmi),
then so does L. Indeed, L ⊆ K(ζm1) · · ·K(ζmn) = K(ζm), where m := m1 · · ·mn.

To prove the local Kronecker-Weber theorem it thus suffices to consider cyclic extensions
K/Qp of prime power degree `r. There two distinct cases: ` 6= p and ` = p.

20.2 The local Kronecker-Weber theorem for ` 6= p

Proposition 20.4. Let K/Qp be a cyclic extension of degree `r for some prime ` 6= p. Then
K lies in a cyclotomic field Qp(ζm).

Proof. Let F be the maximal unramified extension of Qp in K; then F = Qp(ζn) for some
n ∈ Z≥1, by Corollary 10.17. The extension K/F is totally ramified, and it must be tamely
ramified, since the ramification index is a power of ` 6= p. By Theorem 11.10, we have
K = F (π1/e) for some uniformizer π, with e = [K :F ]. We may assume that π = −pu for
some u ∈ O×F , since F/Qp is unramified: if q|p is the maximal ideal of OF then the valuation
vq extends vp with index eq = 1 (by Theorem 8.20), so vq(−pu) = vp(−p) = 1. The field
K = F (π1/e) lies in the compositum of F ((−p)1/e) and F (u1/e), and we will show that both
fields lie in a cyclotomic extension of Qp.
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The extension F (u1/e)/F is unramified, since vq(disc(xe−u)) = 0 for p - e, so F (u1/e)/Qp

is unramified and F (u1/e) = Qp(ζk) for some k ∈ Z≥1. The field K(u1/e) = K ·Qp(ζk) is a
compositum of abelian extensions, soK(u1/e)/Qp is abelian, and it contains the subextension
Qp((−p)1/e)/Qp, which must be Galois (since it lies in an abelian extension) and totally
ramified (by Theorem 11.5, since it is an Eisenstein extension). The field Qp((−p)1/e)
contains ζe (take ratios of roots of xe+p) and is totally ramified, but Qp(ζe)/Qp is unramified
(since p 6 | e), so we must have Qp(ζe) = Qp. Thus e|(p− 1), and by Lemma 20.5 below,

Qp((−p)1/e) ⊆ Qp((−p)1/(p−1)) = Qp(ζp).

It follows that F ((−p)1/e) = F · Qp((−p)1/e) ⊆ Qp(ζn) · Qp(ζp) ⊆ Qp(ζnp). We then have
K ⊆ F (u1/e) · F ((−p)1/e) ⊆ Q(ζk) ·Q(ζnp) ⊆ Q(ζknp) and may take m = knp.

Lemma 20.5. For any prime p we have Qp

(
(−p)1/(p−1)

)
= Qp(ζp).

Proof. Let α = (−p)1/(p−1). Then α is a root of the Eisenstein polynomial xp−1 + p, so the
extension Qp((−p)1/(p−1)) = Qp(α) is totally ramified of degree p−1, and α is a uniformizer
(by Lemma 11.4 and Theorem 11.5). Let π = ζp − 1. The minimal polynomial of π is

f(x) :=
(x+ 1)p − 1

x
= xp−1 + pxp−2 + · · ·+ p,

which is Eisenstein, so Qp(π) = Qp(ζp) is also totally ramified of degree p − 1, and π is a
uniformizer. We have u := −πp−1/p ≡ 1 mod π, so u is a unit in the ring of integers of
Qp(ζp). If we now put g(x) = xp−1 − u then g(1) ≡ 0 mod π and g′(1) = p− 1 6≡ 0 mod π,
so by Hensel’s Lemma 9.15 we can lift 1 to a root β of g(x) in Qp(ζp).

We then have pβp−1 = pu = −πp−1, so (π/β)p−1 + p = 0, and therefore π/β ∈ Qp(ζp) is
a root of the minimal polynomial of α. Since Qp(ζp) is Galois, this implies that α ∈ Qp(ζp),
and since Qp(α) and Qp(ζp) both have degree p− 1, the two fields coincide.

To complete the proof of the local Kronecker-Weber theorem, we need to address the
case ` = p. Before doing so, we first recall some background on Kummer extensions.

20.3 The local Kronecker-Weber theorem for ` = p > 2

We are now ready to prove the local Kronecker-Weber theorem in the case ` = p > 2.

Theorem 20.6. Let K/Qp be a cyclic extension of odd degree pr. Then K lies in a cyclo-
tomic field Qp(ζm).

Proof. There are two obvious candidates for K, namely, the cyclotomic field Qp(ζppr−1),
which by Corollary 10.17 is an unramified extension of degree pr, and the index p−1 subfield
of the cyclotomic field Qp(ζpr+1), which by Corollary 10.18 is a totally ramified extension
of degree pr (the pr+1-cyclotomic polynomial Φpr+1(x) has degree φ(pr+1) = pr(p − 1) and
remains irreducible over Qp). If K is contained in the compositum of these two fields then
K ⊆ Qp(ζm), where m := (pp

r−1)(pr+1) and the theorem holds. Otherwise, the field K(ζm)
is a Galois extension of Qp with

Gal(K(ζm)/Qp) ' Z/prZ× Z/prZ× Z/(p− 1)Z× Z/psZ,

for some s > 0; the first factor comes from the Galois group of Qp(ζppr−1), the second two
factors come from the Galois group of Qp(ζpr+1) (note Qp(ζpr+1)∩Qp(ζppr−1) = Qp), and the
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last factor comes from the fact that we are assuming K 6⊆ Qp(ζm), so Gal(K(ζm)/Qp(ζm))
is nontrivial and must have order ps with 1 ≤ s ≤ r.

It follows that the abelian group Gal(K(ζm)/Qp) has a quotient isomorphic to (Z/pZ)3,
and the subfield of K(ζm) corresponding to this quotient is an abelian extension of Qp with
Galois group (Z/pZ)3. By Proposition 20.7 below, no such field exists.

Proposition 20.7. For odd p every totally wildly ramified Galois extension of Qp is cyclic.
In particular, there is no abelian extension of Qp with Galois group (Z/pZ)3 when p is odd.

Proof. See Problem Set 10 for the first statement. For the second, if Gal(K/Qp) ' (Z/pZ)3

we can write G := Gal(K/Qp) as the internal direct sum of the inertia subgroup I ≤ G and
a cyclic subgroup H ≤ G, since LI is an unramified, hence cyclic extension of Qp with Galois
group isomorphic to G/I ' H. But then LH is a totally wildly ramified abelian extension
of Qp whose Galois group G/H is not cyclic.

Remark 20.8. There is an alternative proof to Proposition 20.7 that is more explicit. One
can show that for odd p the field Qp has exactly p ramified abelian extensions of degree p,
namely, Qp[x]/(xp + pxp−1 + p(1 + ap)), for integers a ∈ [0, p − 1]; see [3, Prop. 2.3.1].
Any noncyclic totally wildly ramified abelian extension of Qp would contain at least p + 1
ramified abelian extensions of degree p, since (Z/pZ)2 has p+ 1 quotients of order p.

Remark 20.9. Another approach to Proposition 20.7 uses Kummer theory. One shows
that for odd p the elementary abelian p-group Qp(ζp)

×/Qp(ζp)
×p has rank at most 2, and

this rules out the existence of a (Z/pZ)3 extension; see [6, Lemma 14.8].

For p = 2 there is an extension of Q2 with Galois group isomorphic to (Z/2Z)3: the
cyclotomic field Q2(ζ24) = Q2(ζ3) · Q2(ζ8). So the proof we used for p > 2 will not work.
However we can apply a completely analogous argument.

Theorem 20.10. Let K/Q2 be a cyclic extension of degree 2r. Then K lies in a cyclotomic
field Q2(ζm).

Proof. The unramified cyclotomic field Q2(ζ22r−1) has Galois group Z/2rZ, and the totally
ramified cyclotomic field Q2(ζ2r+2) has Galois group Z/2Z × Z/2rZ (up to isomorphism).
Let m = (22

r − 1)(2r+2). If K is not contained in Q2(ζm) then

Gal(K(ζm)/Q2) '


Z/2Z× (Z/2rZ)2 × Z/2sZ with 1 ≤ s ≤ r
or
(Z/2rZ)2 × Z/2sZ with 2 ≤ s ≤ r

and thus admits a quotient isomorphic to (Z/2Z)4 or (Z/4Z)3. By Lemma 20.11 below, no
extension of Q2 has either of these Galois groups, thus K must lie in Q2(ζm).

Lemma 20.11. No extension of Q2 has Galois group isomorphic to (Z/2Z)4 or (Z/4Z)3.

Proof. As you proved on Problem Set 4, there are exactly 7 quadratic extensions of Q2; it
follows that no extension of Q2 has Galois group (Z/2Z)4, since this group has 15 subgroups
of index 2 whose fixed fields would yield 15 distinct quadratic extension of Q2.

As you proved on Problem Set 5, there are only finitely many extensions of Q2 of any
fixed degree d, and these can be enumerated by considering Eisenstein polynomials in Q2[x]
of degrees dividing d up to an equivalence relation implied by Krasner’s lemma. One finds
that there are 59 quartic extensions of Q2, of which 12 are cyclic; you can find a list of them
here. It follows that no extension of Q2 has Galois group (Z/4Z)3, since this group has 28
subgroups whose fixed fields would yield 28 distinct cyclic quartic extensions of Q2.
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