
18.785 Number theory I
Lecture #23

Fall 2021
bonus lecture

23 Tate cohomology

In this lecture we introduce a variant of group cohomology known as Tate cohomology, and we
define the Herbrand quotient (a ratio of cardinalities of two Tate cohomology groups), which
will play a key role in our proof of Artin reciprocity. We begin with a brief review of group
cohomology, restricting our attention to the minimum we need to define the Tate cohomology
groups we will use. At a number of points we will need to appeal to some standard results
from homological algebra whose proofs can be found in Section 23.7. For those seeking a more
thorough introduction to group cohomology, see [1]; for general background on homological
algebra, we recommend [7].

23.1 Group cohomology

Definition 23.1. Let G be a group. A G-module is an abelian group A equipped with a
G-action compatible with its group structure: g(a + b) = ga + gb for all g ∈ G, a, b ∈ A.1
This implies |ga| = |a| (where |a| := #〈a〉 is the order of a); in particular ga = 0⇔ a = 0.

A trivial G-module is an abelian group with trivial G-action: ga = a for all g ∈ G, a ∈ A
(so every abelian group can be viewed as a trivial G-module). A morphism of G-modules
is a morphism of abelian groups α : A → B satisfying α(ga) = gα(a). Kernels, images,
quotients, and direct sums of G-modules are also G-modules.

Definition 23.2. Let A be a G-module. The G-invariants of A constitute the G-module

AG := {a ∈ A : ga = a for all g ∈ G}

consisting of elements fixed by G. It is the largest trivial G-submodule of A.

Definition 23.3. Let A be a G-module and let n ∈ Z≥0. The group of n-cochains is
the abelian group Cn(G,A) := Map(Gn, A) of maps of sets f : Gn → A under pointwise
addition. We have C0(G,A) ' A, since G0 = {1} is a singleton set. The nth coboundary
map dn : Cn(G,A)→ Cn+1(G,A) is the homomorphism of abelian groups defined by

dn(f)(g0, . . . , gn) := g0f(g1, . . . , gn)− f(g0g1, g2, . . . , gn) + f(g0, g1g2, . . . , gn)

· · ·+ (−1)nf(g0, . . . , gn−2, gn−1gn) + (−1)n+1f(g0, . . . , gn−1).

The group Cn(G,A) contains subgroups of n-cocycles and n-coboundaries defined by

Zn(G,A) := ker dn and Bn(G,A) := im dn−1,

with B0(G,A) := {0}.

The coboundary map satisfies dn+1 ◦ dn = 0 for all n ≥ 0 (this can be verified directly,
but we will prove it in the next section), thus Bn(G,A) ⊆ Zn(G,A) for n ≥ 0 and the
groups Cn(G,A) with connecting maps dn form a cochain complex

0 −→ C0(G,A)
d0−→ C1(G,A)

d1−→ C2(G,A) −→ · · ·

that we may denote CA. In general, a cochain complex (of abelian groups) is simply a
sequence of homomorphisms dn that satisfy dn+1 ◦ dn = 0. Cochain complexes form a
category whose morphisms are commutative diagrams with cochain complexes as rows.

1Here we put the G-action on the left (one can also define right G-modules), and for the sake of readability
we write A additively, even though we will be primarily interested in cases where A is a multiplicative group.
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Definition 23.4. Let A be a G-module. The nth cohomology group of G with coefficients
in A is the abelian group

Hn(G,A) := Zn(G,A)/Bn(G,A).

Example 23.5. We can work out the first few cohomology groups explicitly by writing out
the coboundary maps and computing kernels and images:

• d0 : C0(G,A)→ C1(G,A) is defined by d0(a)(g) := ga− a (note C0(G,A) ' A).
• H0(G,A) ' ker d0 = AG (note B0(G,A) = {0}).
• im d0 = {f : G→ A | ∃a ∈ A : f(g) = ga− a for all g ∈ G}

(principal crossed homomorphisms).

• d1 : C1(G,A)→ C2(G,A) is defined by d1(f)(g, h) := gf(h)− f(gh) + f(g).

• ker d1 = {f : G→ A | f(gh) = f(g) + gf(h) for all g, h ∈ G}
(crossed homomorphisms).

• H1(G,A) = crossed homomorphisms modulo principal crossed homomorphisms.

• If A is a trivial G-module then H1(G,A) ' Hom(G,A).

Lemma 23.6. Let α : A → B be a morphism of G-modules. We have induced group ho-
momorphisms αn : Cn(G,A) → Cn(G,B) defined by f 7→ α ◦ f that commute with the
coboundary maps. In particular, αn maps cocycles to cocycles and coboundaries to cobound-
aries and thus induces homomorphisms αn : Hn(G,A) → Hn(G,B) of cohomology groups,
and we have a morphism of cochain complexes α : CA → CB:

0 C0(G,A) C1(G,A) C2(G,A) · · ·

0 C0(G,B) C1(G,B) C2(G,B) . . .

←→ ←→d
0

←→ α0

←→d
1

←→ α1

←→d
2

←→ α2

←→ ←→d
0 ←→d

1 ←→d
2

Proof. Consider any n ≥ 0. For all f ∈ Cn(G,A), and g0, . . . , gn ∈ G we have

αn+1
(
dn(f)(g0, . . . , gn)

)
= αn+1

(
g0f(g1, . . . , gn)− · · ·+ (−1)n+1f(g0, . . . , gn−1)

)
= g0(α ◦ f)(g1, . . . , gn)− · · ·+ (−1)n+1(α ◦ f)(g0, . . . , gn−1)

= dn(α ◦ f)(g0, . . . , gn) = dn(αn(f))(g0, . . . , gn),

thus αn+1 ◦ dn = dn ◦ αn. The lemma follows.

Lemma 23.6 implies that we have a family of functors Hn(G, •) from the category of G-
modules to the category of abelian groups (note that id ◦f = f and (α◦β)◦f = α◦ (β ◦f)),
and also a functor from the category of G-modules to the category of cochain complexes.

Lemma 23.7. Suppose that we have a short exact sequence of G-modules

0 −→ A
α−→ B

β−→ C −→ 0.

Then for every n ≥ 0 we have a corresponding exact sequence of n-cochains

0 −→ Cn(G,A)
αn

−→ Cn(G,B)
βn

−→ Cn(G,C) −→ 0.
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Proof. The injectivity of αn follows from the injectivity of α. If f ∈ kerβn, then β ◦ f = 0
and im f ⊆ kerβ = imα; via the bijection α−1 : imα→ A we can define α−1◦f ∈ Cn(G,A),
and therefore kerβn ⊆ imαn. We also have imαn ⊆ kerβn, since β ◦ α ◦ f = 0 ◦ f = 0
for all f ∈ Cn(G,A), and exactness at Cn(G,B) follows. Every f ∈ Cn(G,C) satisfies
im f ⊆ C = imβ, and we can define h ∈ Cn(G,B) satisfying β◦h = f : for each g0, . . . , gn let
h(g0, . . . , gn) be any element of β−1(f(g0, . . . , gn)). Thus f ∈ imβn and βn is surjective.

Lemmas 23.6 and 23.7 together imply that we have an exact functor from the category
of G-modules to the category of cochain complexes.

Theorem 23.8. Every short exact sequence of G-modules

0 −→ A
α−→ B

β−→ C −→ 0

induces a long exact sequence of cohomology groups

0→ H0(G,A)
α0

−→ H0(G,B)
β0

−→ H0(G,C)
δ0−→ H1(G,A) −→ · · ·

and commutative diagrams of short exact sequences of G-modules induce corresponding com-
mutative diagrams of long exact sequences of cohomology groups.

Proof. Lemmas 23.6 and 23.7 give us the commutative diagram

0 Cn(G,A) Cn(G,B) Cn(G,C) 0

0 Cn+1(G,A) Cn+1(G,B) Cn+1(G,C) 0

←→ ← →αn

←→ dn

← →βn

←→ dn

←→

←→ dn

←→ ←→αn+1 ←→βn+1 ←→

We have Bn(G,A) ⊆ Zn(G,A) ⊆ Cn(G,A)
dn−→ Bn+1(G,A) ⊆ Zn+1(G,A) ⊆ Cn+1(G,A),

thus dn induces a homomorphism dn : Cn(G,A)/Bn(G,A)→ Zn+1(G,A), and similarly for
the G-modules B and C. The fact that αn maps coboundaries to coboundaries and cocycles
to cocycles implies that we have induced maps Cn(G,A)/Bn(G,A)→ Cn(G,B)/Bn(G,B)
and Zn+1(G,A)→ Zn+1(G,B); similar comments apply to βn.

We thus have the following commutative diagram:

Cn(G,A)
Bn(G,A)

Cn(G,B)
Bn(G,B)

Cn(G,C)
Bn(G,C) 0

0 Zn+1(G,A) Zn+1(G,B) Zn+1(G,C)

← →αn

←→ dn

← →βn

←→ dn

←→

←→ dn

←→ ←→αn+1 ←→βn+1

The kernels of the vertical maps dn are (by definition) the cohomology groups Hn(G,A),
Hn(G,B), Hn(G,C), and the cokernels are Hn+1(G,A), Hn+1(G,B), Hn+1(G,C). Apply-
ing the snake lemma yields the exact sequence

Hn(G,A)
αn

−→Hn(G,B)
βn

−→Hn(G,C)
δn−→Hn+1(G,A)

αn+1

−→Hn+1(G,B)
βn+1

−→Hn+1(G,C),

where αn and βn are the homomorphisms in cohomology induced by α and β (coming from
αn and βn in the previous diagram via Lemma 23.6), and the connecting homomorphism δn

given by the snake lemma can be explicitly described as

δn : Hn(G,C)→ Hn+1(G,A)

[f ] 7→ [α−1 ◦ dn(f̂)]
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where [f ] denotes the cohomology class of a cocycle f ∈ Cn(G,C) and f̂ ∈ Cn(G,B) is a
cochain satisfying β ◦ f̂ = f . Here α−1 denotes the inverse of the isomorphism A → α(A).
The fact that δn is well defined (independent of the choice of f̂) is part of the snake lemma.
The map H0(G,A)→ H0(G,B) is the restriction of α : A→ B to AG, and is thus injective
(recall that H0(G,A) ' AG). This completes the first part of the proof.

For the second part, suppose we have the following commutative diagram of short exact
sequences of G-modules

0 A B C 0

0 A′ B′ C ′ 0

←→ ←→α

←→ φ

←→β

←→ ψ

←→

←→ ϕ

←→ ←→α
′ ←→β

′ ←→
By Lemma 23.6, to verify the commutativity of the corresponding diagram of long exact
sequences in cohomology we only need to check commutativity at squares of the form

Hn(G,C) Hn+1(G,A)

Hn(G,C ′) Hn+1(G,A′)

←→δ
n

←→ ϕn ←→ φn+1

←→δ
′n

(1)

Let f : Gn → C be a cocycle and choose f̂ ∈ Cn(G,B) such that β ◦ f̂ = f . We have

φn+1(δn([f ])) = φn+1([α−1 ◦ dn(f̂)]) = [φ ◦ α−1 ◦ dn(f̂)].

Noting that ϕ◦ f = ϕ◦β ◦ f̂ = β′ ◦ψ ◦ f̂ and φ◦α−1 = α′−1 ◦ψ (as maps α(A)→ A′) yields

δ′
n
(ϕn([f ])) = δ′

n
([β′ ◦ ψ ◦ f̂ ]) = [α′

−1 ◦ dn(ψ ◦ f̂)] = [α′−1 ◦ ψ ◦ dn(f̂)] = [φ ◦ α−1 ◦ dn(f̂)],

thus diagram (1) commutes as desired.

Definition 23.9. A family of functors Fn from the category of G-modules to the category
of abelian groups that associates to each short exact sequence of G-modules a long exact
sequence of abelian groups such that commutative diagrams of short exact sequences yield
commutative diagrams of long exact sequences is called a δ-functor. A δ-functor is said to
be cohomological if the connecting homomorphisms in long exact sequences are of the form
δn : Fn(G,C) → Fn+1(G,A). If we instead have δn : Fn+1(G,C) → Fn(G,A) then the
δ-functor is homological.

Theorem 23.54 implies that the family of functors Hn(G, •) is a cohomological δ-functor.
In fact it is the universal cohomological δ-functor (it satisfies a universal property that
determines it up to a unique isomorphism of δ-functors), but we will not explore this further.

23.2 Cohomology via free resolutions

Recall that the group ring Z[G] consists of formal sums
∑

g agg indexed by g ∈ G with
coefficients ag ∈ Z, all but finitely many zero. Multiplication is given by Z-linearly extending
the group operation in G; this implies that the ring Z[G] is commutative if and only if G is.
As an abelian group under addition, Z[G] is the free Z-module with basis G, equivalently,
the group of finitely supported functions G→ Z under pointwise addition.
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The notion of a G-module defined in the previous section is equivalent to that of a
(left) Z[G]-module: to define multiplication by Z[G] one must define a G-action, and the
G-action on a G-module extends Z-linearly, since every G-module is also a Z-module. The
multiplicative identity 1 of the ring Z[G] is the identity element of G; the additive identity 0
is the empty sum, which acts on A by sending a ∈ A to the identity element of A.2

For any n ≥ 0 we view Z[Gn] as a G-module with G acting diagonally on the left:
g · (g1, . . . , gn) := (gg1, . . . , ggn). This makes Z[G0] = Z a trivial G-module (here we are
viewing the empty tuple as the identity element of the trivial group G0).

Definition 23.10. Let G be a group. The standard resolution of Z by G-modules is the
exact sequence of G-module homomorphisms

· · · −→ Z[Gn+1]
dn−→ Z[Gn] −→ · · · d1−→ Z[G]

d0−→ Z −→ 0,

where the boundary maps dn are defined by

dn(g0, . . . , gn) :=

n∑
i=0

(−1)i(g0, . . . , ĝi, . . . , gn)

and extended Z-linearly (the notation ĝi means omit gi from the tuple). The map d0 sends
each g ∈ G to 1, and extends to the map

∑
g agg 7→

∑
g ag, which is also known as the

augmentation map and may be denoted ε.

Let us verify the exactness of the standard resolution.

Lemma 23.11. The standard resolution of Z by G-modules is exact.

Proof. The map d0 is clearly surjective. To check im dn+1 ⊆ ker dn it suffices to note that
for any g0, . . . , gn ∈ G we have

dn(dn+1(g0, . . . , gn)) =
∑

0≤i≤n

( ∑
0≤j<i

(−1)i+j(g0, . . . , ĝj , . . . , ĝi . . . , gn) +

∑
i<j≤n

(−1)i+j−1(g0, . . . , ĝi, . . . , ĝj , . . . , gn)

)
= 0.

Let Gn+1
1 be the subgroup 1 × Gn of Gn+1, and let h : Z[Gn+1] → Z[Gn+2

1 ] ⊆ Z[Gn+2]
be the Z-linear map defined by (g0, . . . , gn+1) 7→ (1, g0, . . . , gn+1). For x ∈ Z[Gn+1] we have
dn+1(h(x)) ∈ x + Z[Gn+1

1 ], and if x ∈ ker dn then x− dn+1(h(x)) ∈ ker dn ∩ Z[Gn+1
1 ], since

im dn+1 ⊆ ker dn. To prove ker dn ⊆ im dn+1, it suffices to show ker dn ∩Z[Gn+1
1 ] ⊆ im dn+1.

For n = 0 we have ker d0 ∩ Z[G1
1] = {0}, and we now proceed by induction on n ≥ 1.

Let Gn+1
11 := 1 × 1 × Gn−1 ⊆ Gn+1

1 . We can write the free Z-module Z[Gn+1
1 ] as the

internal direct sum Z[Gn+1
1 ] + X, where X is the free Z-module generated by elements of

the form (1, g1, . . . , gn) with g1 6= 1. For g1 6= 1 the image of (1, g1, . . .) under dn has the
form (g1, . . . , gn) + y with y ∈ Gn1 , and it follows that the restriction of dn to X is injective
and thus has trivial kernel. It therefore suffices to show ker dn ∩ Z[Gn+1

11 ] ⊆ im dn+1.
Let x ∈ ker dn ∩ Z[Gn+1

11 ]. If n = 1 then x = d2(h(x)) ∈ im dn+1. For n ≥ 2, let
π : Z[Gn+1]→ Z[Gn−1] be the Z-linear map defined by (g0, g1, g2, . . . , gn) 7→ (g2, . . . , gn). We

2When A is written multiplicatively its identity is denoted 1 and one should think of 0 as acting via
exponentiation (but for the moment we continue to use additive notation and view A as a left Z[G]-module).
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have π(x) ∈ ker dn−2 ⊂ im dn−1 (by the inductive hypothesis), and for any y ∈ d−1n−1(π(x))
we have x = dn+1(h11(y)) ∈ im dn+1, where h11 : Z[Gn−1] → Z[Gn+1] is the Z-linear map
defined by (g0, . . . , gn−1) 7→ (1, 1, g0, . . . , gn−1). Therefore ker dn ∩ Z[Gn+1

11 ] ⊆ im dn+1.

Definition 23.12. Let R be a (not necessarily commutative) ring. A free resolution P of a
(left) R-module M is an exact sequence of free (left) R-modules Pn

· · · dn+1−→ Pn+1
dn−→ Pn

dn−1−→ · · · d1−→ P1
d0−→M −→ 0.

Free resolutions arise naturally as presentations of an R-module. Every R-module M
admits a surjection from a free module (one can always take P1 to be the free R-module with
basisM). This yields an exact sequence P1 →M → 0, and the kernel of the homomorphism
on the left is itself an R-module that admits a surjection from a free R-module P2; continuing
in this fashion yields a free resolution.

The free resolution P effective encodes the structure of M as quotients of free modules
M ' P1/d1(P2), d1(P2) ' P2/d2P3),. . . , that can be used as a replacement for M in many
contexts. When working with a free/projective/flat (or injective) resolution P of a module
M we will often want to view P simply as the sequence of R-modules Pn that ends (or
begins) with P1, which we regard as a substitute for M . When we refer to the resolution P
we typically mean just this truncated sequence with M removed.

Let A andM be R-modules. If we apply the contravariant left exact functor HomR(•, A)
to a (truncated) free resolution P of M , we obtain a cochain complex of R-modules

· · ·
d∗n+1←− P ∗n+1

d∗n←− P ∗n
d∗n−1←− · · ·

d∗1←− P ∗1 ←− 0.

where d∗n(ϕ) := ϕ◦dn. The maps d∗n satisfy d∗n+1 ◦d∗n = 0: for all ϕ ∈ HomR(Pn, A) we have

(d∗n+1 ◦ d∗n)(ϕ) = (dn ◦ dn+1)
∗(ϕ) = ϕ ◦ dn ◦ dn+1 = ϕ ◦ 0 = 0.

This cochain complex need not be exact, because the functor HomR(•, A) is not right-exact,3

so we have potentially nontrivial cohomology groups ker d∗n+1/ im d∗n, which are denoted
ExtnR(M,A). A key result of homological algebra is that (up to isomorphism) these coho-
mology groups do not depend on the resolution P , only on A and M ; see Theorem 23.70.

Recall that Z[G] is a free Z-module (with basis G), and for all n ≥ 0 we have

Z[Gn+1] '
⊕

(g1,...,gn)∈Gn

Z[G](1, g1, . . . , gn).

It follows that the standard resolution is a free resolution of Z by Z[G]-modules; note that Z,
like any abelian group, can always be viewed as a trivial G-module, hence a Z[G]-module.

With a free resolution in hand, we now want to consider the cochain complex

0→ HomZ[G](Z[G], A) −→ · · · −→ HomZ[G](Z[Gn], A)
d∗n−→ HomZ[G](Z[Gn+1], A) −→ · · ·

where d∗n is defined by ϕ 7→ ϕ ◦ dn. Let SA denote this cochain complex.
3Applying HomZ(•,Z) to 0→ Z→ Q→ Q/Z→ 0 yields 0← Z← 0← 0← 0, for example.
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Proposition 23.13. Let A be a G-module. For every n ≥ 0 we have an isomorphism of
abelian groups

Φn : HomZ[G](Z[Gn+1], A)
∼−→ Cn(G,A)

that sends ϕ : Z[Gn+1]→ A to the function f : Gn → A defined by

f(g1, . . . , gn) := ϕ(1, g1, g1g2, . . . , g1g2 · · · gn).

The isomorphisms Φn satisfy Φn+1 ◦ d∗n+1 = dn ◦ Φn for all n ≥ 0 and thus define an
isomorphism of cochain complexes ΦA : SA → CA.

Proof. We first check that Φn is injective. Let ϕ ∈ ker Φn. Given g0, . . . , gn ∈ G, let
hi := g−1i−1gi for 1 ≤ i ≤ n so that h1 · · ·hi = g−10 gi and observe that

ϕ(g0, . . . , gn) = g0ϕ(1, g−10 g1, . . . , g
−1
0 gn) = g0ϕ(1, h1, h1h2, . . . , h1 · · ·hn) = 0.

so ϕ = 0 as desired. For surjectivity, let f ∈ Cn(G,A) and define ϕ ∈ HomZ[G](Z[Gn+1], A)

via ϕ(g0, . . . , gn) := g0f(g−10 g1, g
−1
1 g2, . . . , g

−1
n−1gn). For any g1, . . . , gn ∈ G we have

Φn(ϕ)(g1, . . . , gn) = ϕ(1, g1, g1g2, . . . , g1g2 · · · gn) = f(g1, . . . , gn),

so f ∈ im Φn and Φn is surjective.
It is clear from the definition that Φn(ϕ1 + ϕ2) = Φn(ϕ1) + Φn(ϕ2), so Φn is a bijective

group homomorphism, hence an isomorphism. Finally, for any ϕ ∈ HomZ[G](Z[Gn+1], A)
and g1, . . . , gn+1 ∈ G we have

Φn+1(d∗n+1(ϕ))(g1, . . . , gn+1) = d∗n+1(ϕ)(1, g1, g1g2, . . . , g1 · · · gn+1)

= ϕ(dn+1(1, g1, g1g2, . . . , g1 · · · gn+1))

=
n+1∑
i=0

(−1)iϕ(1, g1, . . . , g1 · · · gi−1, g1 · · · gi+1, . . . , g1 · · · gn+1)

= g1Φ
n(ϕ)(g2, . . . , gn+1)

+

n∑
i=1

(−1)iΦn(ϕ)(g1, . . . , gi−2, gi−1gi, gi+1, . . . , gn+1)

+ (−1)n+1Φn(ϕ)(g1, . . . , gn)

= dn(Φn(ϕ))(g1, . . . , gn+1),

which shows that Φn+1 ◦ d∗n+1 = d∗n ◦ Φn as claimed.

Corollary 23.14. Let A be a G-module. The cochain complexes SA and CA have the same
cohomology groups, in other words, Hn(G,A) ' ExtnZ[G](Z, A) for all n ≥ 0, and we can
compute Hn(G,A) using any free resolution of Z by G-modules.

Proof. This follows immediately from Proposition 23.13 and Theorem 23.70.

Corollary 23.15. For any G-modules A and B we have

Hn(G,A⊕B) ' Hn(G,A)⊕Hn(G,B)

for all n ≥ 0, and the isomorphism commutes with the natural inclusion and projection maps
for the direct sums on both sides.
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Proof. By Lemma 23.73, the functor ExtnZ[G](Z, •) is an additive functor.

Definition 23.16. A category containing finite coproducts (such as direct sums) in which
each set of morphisms between objects has the structure of an abelian group whose addition
distributes over composition (and vice versa) is called an additive category. A functor F
between additive categories is an additive functor if it maps zero objects to zero objects and
satisfies F (X ⊕ Y ) ' F (X) ⊕ F (Y ), where the isomorphism commutes with the natural
inclusion and projection maps for the direct sums on both sides.

Definition 23.17. Let G be a group and let A be an abelian group. The abelian group

CoIndG(A) := HomZ(Z[G], A)

with G-action defined by (gϕ)(z) := ϕ(zg) is the coinduced G-module associated to A.

Warning 23.18. Some texts [3, 5] use IndG(A) instead of CoIndG(A) to denote the G-
module HomZ(Z[G], A) and refer to it is as “induced” rather than “coinduced”. Here we
follow [1, 4, 7] and reserve the notation IndG(A) for the induced G-module Z[G] ⊗Z A
defined below (see Definition 23.25). As shown by Lemma 23.27, this clash in terminology
is fairly harmless when G is finite, since we then have IndG(A) ' CoIndG(A).

Lemma 23.19. Let G be a group and A an abelian group. Then H0(G,CoIndG(A)) ' A
and Hn(G,CoIndG(A)) = 0 for all n ≥ 1.

Proof. For all n ≥ 1 we have an isomorphisms of abelian groups

α : HomZ[G](Z[Gn],CoIndG(A))
∼−→ HomZ(Z[Gn], A)

ϕ 7→ (z 7→ ϕ(z)(1))

(z 7→ (y 7→ φ(yz)))←[ φ

Indeed,

α(α−1(φ)) = α(z 7→ (y 7→ φ(yz)))) = (z 7→ φ(z)) = φ,

α−1(α(ϕ)) = α−1(z 7→ ϕ(z)(1)) = (z 7→ (y 7→ ϕ(yz)(1))) = (z 7→ ϕ(z)) = ϕ.

Thus computing Hn(G,CoIndG(A)) using the standard resolution P of Z by G-modules
is the same as computing Hn({1}, A) using the resolution P viewed as a resolution of Z
by {1}-modules (abelian groups); note that Z[Gn] is also a free Z[{1}]-module, and the G-
module morphisms dn in the standard resolution are also {1}-module morphisms (morphisms
of abelian groups). Therefore Hn(G,CoIndG(A)) ' Hn({1}, A) for all n ≥ 0.

But we can also compute Hn({1}, A) using the free resolution · · · → 0 → Z → Z → 0,
which implies Hn({1}, A) = 0 for n ≥ 1 and H0({1}, A) ' HomZ(Z, A) ' A.

23.3 Derived functors

Our construction of ExtnZ[G](Z, A) as the nth cohomology group of the cochain complex
obtained by applying the functor Hom(•, A) to a free resolution of Z by G-modules is a
special case of a more general construction in category theory. For the sake of brevity we
will limit our discussion to categories of R-modules, which we note includes the category of
abelian groups (take R = Z), but everything in this section applies to any abelian category
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(an additive category in which every morphism has both a kernels and cokernel such that
every monomorphism is a kernel and every epimorphism is a cokernel).

A covariant (or contravariant) functor is left exact if it sends short exact sequences
0 → A → B → C → 0 to exact sequences 0 → A′ → B′ → C ′ (or 0 → C ′ → B′ → A′).
The functors HomR(A, •) and HomR(•, A) are both left exact functors from R-modules to
abelian groups; the first is covariant and the second is contravariant.

Given a left exact functor F from R-modules to abelian groups, one can construct right
derived functors RnF from R-modules to abelian groups that sends each R-module A to
the nth cohomology group of the cochain complex obtained by applying F to a suitable
resolution of A. If F is covariant, one uses an injective resolution I of A, an exact sequence

0→ A→ I1 → I2 → · · ·

in which each Ii is an injective R-module, meaning that the functor HomR(•, Ii) is exact.
If F is contravariant one instead uses a projective resolution P of A, an exact sequence

· · ·P2 → P1 → A→ 0

in which each Pi is a projective R-module, meaning that the functor HomR(Pi, •) is exact.
The functor RnF is covariant if F is covariant and contravariant if F is contravariant, and
we always have R0F = F .

The cohomology group Hn(G,A) can be computed by taking F to be the functor that
sends a G-module A to the abelian group formed by its G-invariants,

AG ' HomZ[G](Z, A).

This canonical isomorphism is a consequence of the fact that defining a morphism from
the trivial G-module Z to A amounts to picking a G-invariant value for ϕ(1) ∈ A, and it
allows us to consider two functors F : the covariant functor •G and the contravariant functor
HomZ[G](•, A), both of which are left exact. We thus have

Rn •G (A) ' Hn(G,A) ' ExtnZ[G](Z, A) ' Rn HomZ[G](•, A)(Z).

The group on the left has the virtue of simplicity and is often used to define Hn(G,A), but
in most settings it is not as easy to compute as the group on the right. We should also make
the more general remark that the group ExtR(M,N) can also be computed in two ways:

Rn HomR(M, •)(N) ' ExtnR(M,N) ' HomR(•, N)(M),

as shown in [7, Theorem 2.7.6].
One can compute (and often defines) the cohomology group Hn(G,A) as RnF(A), where

F is the functor •G of G-invariants. But notice that AG ' HomZ[G](Z, A) (morphisms
ϕ : Z → A are determined by a choice of ϕ(1) ∈ A, which must be G-invariant since Z is
a trivial G-module). This means we can also compute Hn(G, a) as RnF(Z), where F is
the functor HomZ[G](•, A), which is contravariant, meaning its right derived functors are
computed using projective resolutions (see §23.7.2), which includes standard resolution of Z
by G-modules (since free modules are projective).

Thus far we have focused on derived functors arising from hom functors, which allow
us to compute group cohomology, but in the next section we will want to consider derived
functors arising from tensor functors, which will allow us to compute group homology.
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One minor technical detail: for noncommutative rings R the tensor product M ⊗R N
makes sense only when M is a right R-module and N is a left R-module; the tensor product
M ⊗R N is then an abelian group. This gives rise to the functor • ⊗R N , which sends
right R-modules to abelian groups, and the functor M ⊗R •, which sends left R-modules
to abelian groups. Both functors are covariant and right exact, which means they have left
derived functors that can be computed using projective resolutions.

We will once again use the standard resolution of Z by G-modules, but in order to use
the functor •⊗RN we need to make Z[Gn] a right R-module, so we let G act diagonally on
the right (g1, . . . , gn) · g := (g1g, . . . , gng). Whenever we write Z[Gn] it should be clear from
context (or we will explicitly state) whether we are viewing it as a left or right G-module;
the two notions are isomorphic, since right action by g corresponds to left action by g−1.

23.4 Homology via free resolutions

In the previous section we applied the contravariant left exact functor HomZ[G](•, A) to the
truncation of the standard resolution of Z by G-modules to get a cochain complex with
cohomology groups Hn(G,A) ' ExtnZ[G](Z, A). If we do the same thing using the covariant
right exact functor • ⊗Z[G] A we get a chain complex (of Z-modules)

· · · −→ Z[Gn+1]⊗Z[G] A
dn∗−→ Z[Gn]⊗Z[G] A −→ · · · −→ Z[G]⊗Z[G] A −→ 0,

where dn∗ is defined by (g0, . . . , gn)⊗ a 7→ dn(g0, . . . , gn)⊗ a. As noted above, here we need
to view Z[Gn] as a right Z[G]-module, with G acting diagonally on the right.

We then have homology groups ker dn∗/ im dn+1∗. As with the groups ExtnZ[G](Z, A), we
get the same homology groups using any free resolution of Z by right Z[G]-modules, and
they are generically denoted Tor

Z[G]
n (Z, A); see Theorem 23.75.

Definition 23.20. Let A be a G-module. The nth homology group of G with coefficients
in A is the abelian group Hn(G,A) := Tor

Z[G]
n (Z, A). If α : A → B is a morphism of G-

modules, the natural morphism αn : Hn(G,A) → Hn(G,B) is given by x ⊗ a 7→ x ⊗ ϕ(a).
Each Hn(G, •) is a functor from the category of G-modules to the category of abelian groups.

The family of functors Hn(G, •) is a homological δ-functor.

Theorem 23.21. Every short exact sequence of G-modules

0 −→ A
α−→ B

β−→ C −→ 0

induces a long exact sequence of homology groups

· · · −→ H1(G,C)
δ0−→ H0(G,A)

α0−→ H0(G,B)
β0−→ H0(G,C) −→ 0,

and commutative diagrams of short exact sequences of G-modules induce corresponding com-
mutative diagrams of long exact sequences of homology groups.

Proof. The proof is directly analogous to that of Theorem 23.8 (or see Theorem 23.50).

As with Hn(G, •), the functors Hn(G, •) are additive functors.
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Corollary 23.22. For any G-modules A and B we have

Hn(G,A⊕B) ' Hn(G,A)⊕Hn(G,B)

for all n ≥ 0, and the isomorphism commutes with the natural inclusion and projection maps
for the direct sums on both sides.

Proof. By Lemma 23.77, the functor Tor
Z[G]
n (Z, •) is an additive functor.

For n = 0 we have

H0(G,A) := Tor
Z[G]
0 (Z, A) = Z⊗Z[G] A,

where we are viewing Z as a (right) Z[G]-module with G acting trivially; see Lemma 23.78 for
a proof of the second equality. This means that

∑
agg ∈ Z[G] acts on Z via multiplication

by the integer
∑
ag. This motivates the following definition.

Definition 23.23. Let G be a group. The augmentation map ε : Z[G]→ Z is the ring ho-
momorphism

∑
agg 7→

∑
ag.4 The augmentation ideal IG is the kernel of the augmentation

map; it is a free Z-module with basis {g − 1 : g ∈ G}.

The augmentation ideal IG is precisely the annihilator of the Z[G]-module Z; therefore

Z⊗Z[G] A ' A/IGA.

Definition 23.24. Let A be a G-module. The group of G-coinvariants of A is the G-module

AG := A/IGA;

it is the largest trivial G-module that is a quotient of A.

We thus have H0(G,A) ' AG and H0(G,A) ' AG.

Definition 23.25. Let G be a group and let A be an abelian group. The abelian group

IndG(A) := Z[G]⊗Z A

with G-action defined by g(z ⊗ a) = (gz)⊗ a is the induced G-module associated to A.

Lemma 23.26. Let G be a group and A an abelian group. Then H0(G, IndG(A)) ' A and
Hn(G, IndG(A)) = 0 for all n ≥ 1.

Proof. Viewing Z[Gn] as a right Z[G]-module and Z[G] as a left Z[G]-module, for all n ≥ 1,

Z[Gn]⊗Z[G] (Z[G]⊗Z A) ' (Z[Gn]⊗Z[G] Z[G])⊗Z A ' Z[Gn]⊗Z A,

by associativity of the tensor product (and the fact that M ⊗R R ' M for any right R-
module M). This implies that computing Hn(G, IndG(A)) using the standard resolution P
of Z by (right) G-modules is the same as computing Hn({1}, A) using the resolution P
viewed as a resolution of Z by {1}-modules (abelian groups). Thus

Hn(G, IndG(A)) = TorZ[G]
n (Z, IndG(A)) ' TorZn(Z, A) = Hn({1}, A).

But we can also compute Hn({1}, A) using the free resolution · · · → 0→ Z→ Z→ 0, which
implies Hn({1}, A) = 0 for n ≥ 1 and H0({1}, A) ' Z⊗A ' A.

4The augmentation map is the boundary map d0 in the standard resolution of Z by G-modules.
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Lemma 23.27. Let G be a finite group and A an abelian group. The G-modules IndG(A)
and CoIndG(A) are isomorphic.

Proof. We claim that we have a canonical G-module isomorphism given by

α : CoIndG(A)
∼−→ IndG(A)

ϕ 7→
∑
g∈G

g−1 ⊗ ϕ(g)

(g−1 7→ a)←[ g ⊗ a

where (g−1 7→ a)(h) = 0 for h ∈ G − {g−1}. It is obvious that α and α−1 are inverse
homomorphisms of abelian groups, we just need to check that there are morphisms of G-
modules. For any h ∈ G and ϕ ∈ CoIndG(A) we have

α(hϕ) =
∑
g∈G

g−1 ⊗ (hϕ)(g) = h
∑
g∈G

(gh)−1 ⊗ ϕ(gh) = h
∑
g∈G

g−1 ⊗ ϕ(g) = hα(ϕ),

and for any h ∈ G and g ⊗ a ∈ IndG(A) we have

α−1(h(g ⊗ a)) = α−1(hg ⊗ a) = ((hg)−1 7→ a) = h(g−1 7→ a) = hα−1(g ⊗ a),

since for ϕ = (g−1 7→ a) the identity (hϕ)(z) = ϕ(zh) implies hϕ = ((hg)−1 7→ a).

Corollary 23.28. Let G be a finite group, A be an abelian group, and let B be IndG(A) or
CoIndG(A). Then H0(G,B) ' H0(G,B) ' A and Hn(G,B) = Hn(G,B) = 0 for all n ≥ 1.

Proof. This follows immediately from Lemmas 23.19, 23.26, 23.27.

23.5 Tate cohomology

We now assume that G is a finite group.

Definition 23.29. The norm element of Z[G] is NG :=
∑

g∈G g.

Lemma 23.30. Let A be a G-module and let NG : A→ A be the G-module endomorphism
a 7→ NGa. We then have IGA ⊆ kerNG and imNG ⊆ AG, thus NG induces a morphism
N̂G : AG → AG of trivial G-modules.

Proof. We have gNG = NG for all g ∈ G, so imNG ⊆ AG, and NG(g − 1) = 0 for all g ∈ G,
so NG annihilates the augmentation ideal IG and IGA ⊆ kerNG. The lemma follows.

Definition 23.31. Let A be a G-module for a finite group G. For n ≥ 0 the Tate cohomology
and homology groups are defined by

Ĥn(G,A) :=

{
coker N̂G for n = 0

Hn(G,A) for n > 0
Ĥn(G,A) :=

{
ker N̂G for n = 0

Hn(G,A) for n > 0

Ĥ−n(G,A) := Ĥn−1(G,A) Ĥ−n(G,A) := Ĥn−1(G,A).

Note that Ĥ0(G,A) is a quotient of H0(G,A) ' AG (the largest trivial G-module in A) and
Ĥ0(G,A) is a submodule of H0(G,A) ' AG (the largest trivial G-module quotient of A).

Thus any morphism of G-modules induces natural morphisms of Tate cohomology and
homology groups in degree n = 0 (and all other degrees, as we already know). We thus have
functors Ĥn(G, •) and Ĥn(G, •) from the category of G-modules to the category of abelian
groups.
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Given that every Tate homology group is also a Tate cohomology group, in practice one
usually refers only to the groups Ĥn(G,A), but the notation Ĥn(G,A) can be helpful to
highlight symmetry.

Theorem 23.32. Let G be a finite group. Every short exact sequence of G-modules

0 −→ A
α−→ B

β−→ C −→ 0

induces a long exact sequence of Tate cohomology groups

· · · −→ Ĥn(G,A)
α̂n

−→ Ĥn(G,B)
β̂n

−→ Ĥn(G,C)
δ̂n−→ Ĥn+1(G,A) −→ · · · ,

equivalently, a long exact sequence of Tate homology groups

· · · −→ Ĥn(G,A)
α̂n−→ Ĥn(G,B)

β̂n−→ Ĥn(G,C)
δ̂n−→ Ĥn−1(G,A) −→ · · · .

Commutative diagrams of short exact sequences of G-modules induce commutative diagrams
of long exact sequences of Tate cohomology groups (equivalently, Tate homology groups).

Proof. It follows from Theorems 23.8 and 23.21 that it is enough to prove exactness at the
terms Ĥ0(G, •) = Ĥ−1(G, •) and Ĥ0(G, •) = Ĥ−1(G, •). We thus consider the diagram

H1(G,C) AG BG CG 0

0 AG BG CG H1(G,A)

←→δ0 ←→α0

←→ N̂G

←→β0

←→ N̂G

← →
←→ N̂G
← → ←→α

0 ←→β
0 ←→δ

0

whose top and bottom rows are the end and beginning of the long exact sequences in
homology and cohomology given by Theorems 23.21 and 23.8, respectively; here we are
using H0(G, •) ' •G and H0(G, •) ' •G.

For any [a] ∈ AG = A/IGA we have N̂G(α0([a])) = NGα(a) = α(NGa) = α0(N̂G([a])),
so the first square commutes, as does the second (by the same argument). Applying the
snake lemma yields an exact sequence of kernels and cokernels of N̂G

Ĥ0(G,A)
α̂0→ Ĥ0(G,B)

β̂0→ Ĥ0(G,C)
δ̂→ Ĥ0(G,A)

α̂0

→ Ĥ0(G,B)
β̂0

→ Ĥ0(G,C),

where δ̂([c]) = [a] for any a ∈ A, b ∈ B, c ∈ C with α(a) = NGb and β(b) = c ∈
kerNG (that this uniquely defines the connecting homomorphism δ̂ is part of the snake
lemma). Note that im δ0 = kerα0 = ker α̂0 ⊆ ker N̂G, since α0 is injective, so δ0 gives a
well-defined map δ̂0 : Ĥ1(G,C) → Ĥ0(G,A) that makes the sequence is exact at Ĥ0(G,A).
Similarly, im N̂G ⊆ imβ0 = ker δ0, since β0 is surjective, so δ0 induces a well-defined map
δ̂0 : Ĥ0(G,C)→ H1(G,A) that makes the sequence exact at Ĥ0(G,C).

For the last statement of the theorem, suppose we have the following commutative dia-
gram of exact sequences of G-modules

0 A B C 0

0 A′ B′ C ′ 0

←→ ←→α

←→ φ

←→β

←→ ψ

←→

←→ ϕ

←→ ←→α
′ ←→β

′ ←→
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By Theorems 23.21 and 23.8, we only need to verify the commutativity of the square

Ĥ0(G,C) Ĥ0(G,A)

Ĥ0(G,C
′) Ĥ0(G,A′)

←→δ̂

←→ ϕ0 ←→ φ0

←→δ̂
′

Let a ∈ A, b ∈ B, c ∈ C satisfy α(a) = NGb and β(b) = c ∈ kerNG as in the definition of δ̂
above, so that δ̂([c]) = [a]. Now let a′ = φ(a), b′ = ψ(b), c = ϕ(c). Then

α′(a′) = α′(φ(a)) = ψ(α(a)) = ψ(NGb) = NGψ(b) = NGb
′

β′(b′) = β′(ψ(b)) = ϕ(β(b)) = ϕ(c) = c′ ∈ kerNG,

where we have used NGc
′ = NGϕ(c) = ϕ(NGc) = ϕ(0) = 0. Thus δ̂′([c′]) = [a′] and

φ0(δ̂([c])) = φ0([a]) = [φ(a)] = [a′] = δ̂′([c′]) = δ̂′([ϕ(c)]) = δ̂′(ϕ0([c])),

so φ0 ◦ δ̂ = δ̂′ ◦ ϕ0 as desired.

Theorem 23.32 implies that the family Ĥn(G, •) is a cohomological δ-functor, and that
the family Ĥn(G, •) is a homological δ-functor.

Corollary 23.33. Let G be a finite group. For any G-modules A and B we have

Ĥn(G,A⊕B) ' Ĥn(G,A)⊕ Ĥn(G,B),

for all n ∈ Z, and the isomorphisms commute with the natural inclusion and projection maps
for the direct sums on both sides.

Proof. For n 6= 0,−1 this follows from Corollaries 23.15 and 23.22. For n = 0,−1 it suffices
to note that NG acts on A ⊕ B component-wise, and the induced morphism N̂G thus acts
on (A⊕B)G = AG ⊕BG component-wise.

Theorem 23.34. Let G be a finite group and let B be an induced or co-induced G-module
associated to some abelian group A. Then Ĥn(G,B) = Ĥn(G,B) = 0 for all n ∈ Z.

Proof. By Corollary 23.28, we only need to show Ĥ0(G,B) = Ĥ0(G,B) = 0, and by
Lemma 23.27 it suffices to consider the case B = IndG(A) = Z[G] ⊗Z A. Equivalently,
we need to show that NG : B → B has kernel IGB and image BG. By definition, the Z[G]-
action on B = Z[G] ⊗Z A only affects the factor Z[G], so this amounts to showing that, as
an endomorphism of Z[G], we have kerNG = IG and imNG = Z[G]G. But this is clear:
the action of NG on Z[G] is

∑
g∈G agg 7→ (

∑
g∈G ag)NG. The kernel of this action is the

augmentation ideal IG, and its image is Z[G]G = {
∑

g∈G agg : all ag ∈ Z equal} = NGZ.

Remark 23.35. Theorem 23.34 explains a major motivation for using Tate cohomology.
It is the minimal modification needed to ensure that induced (and co-induced) G-modules
have trivial homology and cohomology in all degrees.

Corollary 23.36. Let G be a finite group and let A be a free Z[G]-module. Then we have
Ĥn(G,A) = Ĥn(G,A) = 0 for all n ∈ Z.

Proof. Let S be a Z[G]-basis for A and let B be the free Z-module with basis S. Then
A ' IndG(B) and the corollary follows from Theorem 23.34.
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23.6 Tate cohomology of cyclic groups

We now assume that G is a cyclic group 〈g〉 of finite order. In this case the augmentation
ideal IG is principal, generated by g − 1 (as an ideal in the ring Z[G], not as a Z-module).
We have a free resolution of Z by G-modules

· · · −→ Z[G]
NG−→ Z[G]

g−1−→ Z[G]
NG−→ Z[G]

g−1−→ Z[G]
ε−→ Z −→ 0. (2)

The fact that augmentation ideal IG = (g − 1) is principal (because G is cyclic) ensures
imNG = ker(g − 1), making the sequence exact.

The group ring Z[G] is commutative, since G is, so we need not distinguish left and right
Z[G]-modules, and may view HomZ[G](Z[G], A) as a G-module via (gϕ)(h) := ϕ(gh).5

Theorem 23.37. Let G = 〈g〉 be a finite cyclic group and let A be a G-module. For all n ∈ Z
we have Ĥ2n(G,A) ' Ĥ2n−1(G,A) ' Ĥ0(G,A) and Ĥ2n(G,A) ' Ĥ2n−1(G,A) ' Ĥ0(G,A).

Proof. We have canonical G-module isomorphisms HomZ[G](Z[G], A) ' A ' Z[G] ⊗Z[G] A
induced by ϕ 7→ ϕ(1) and a 7→ 1 ⊗ a, respectively, and these isomorphisms preserve the
multiplication-by-g endomorphisms (that is, (gϕ)(1) = gϕ(1) and 1⊗ ga = g(1⊗ a)). Using
the free resolution in (2), we can thus compute Hn(G,A) using the cochain complex

0 −→ A
g−1−→ A

NG−→ A
g−1−→ A

NG−→ A −→ · · · ,

and we can compute Hn(G,A) using the chain complex

· · · −→ A
NG−→ A

g−1−→ A
NG−→ A

g−1−→ A −→ 0.

We now observe that AG = ker(g − 1), so for all n ≥ 1 we have

H2n(G,A) = H2n−1(G,A) = ker(g − 1)/ imNG = coker N̂G = Ĥ0(G,A),

so Ĥ2n(G,A) = Ĥ2n−1(G,A) = Ĥ0(G,A) for all n ∈ Z, since Ĥ−2n(G,A) = Ĥ2n−1(G,A)
and Ĥ−2n+1(G,A) = Ĥ2n(G,A) for all n ≥ 0.

We also note that im(g − 1) = IGA, so for all n ≥ 1 we have

H2n(G,A) = H2n−1(G,A) = kerNG/ im(g − 1) = ker N̂G = Ĥ0(G,A),

so Ĥ2n(G,A) = Ĥ2n−1(G,A) = Ĥ0(G,A) for all n ∈ Z, since Ĥ−2n(G,A) = Ĥ2n−1(G,A)
and Ĥ−2n+1(G,A) = Ĥ2n(G,A) for all n ≥ 0.

It follows from Theorem 23.37 that when G is a finite cyclic group, all of the Tate
homology/cohomology groups are determined by Ĥ0(G,A) = ker N̂G = kerNG/ im(g − 1)
and Ĥ0(G,A) = coker N̂G = ker(g − 1)/ imNG. This motivates the following definition.

Definition 23.38. Let G be a finite cyclic group and let A be a G-module. We define
hn(A) := hn(G,A) := #Ĥn(G,A) and hn(A) := hn(G,A) := #Ĥn(G,A). Whenever h0(A)
and h0(A) are both finite, we also define the Herbrand quotient h(A) := h0(A)/h0(A) ∈ Q.

5Note that we must have g1g2ϕ(h) = g1(g2ϕ)(h) = (g2ϕ)(g1h) = ϕ(g2g1h) = g2g1ϕ(h) in order for ϕ to
be both a Z[G]-module morphism and an element of a Z[G]-module, so this will not work if G is not abelian.
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Remark 23.39. Some authors define the Herbrand quotient via h(A) := h0(A)/h1(A) or
h(A) := h0(A)/h−1(A) or h(A) := h2(A)/h1(A), but Theorem 23.37 implies that these
definitions are all the same as ours. The notation q(A) is often used instead of h(A), and
one occasionally sees the Herbrand quotient defined as the reciprocal of our definition (as in
[2], for example), but this is less standard.

Corollary 23.40. Let G be a finite cyclic group. Given an exact sequence of G-modules

0 −→ A
α−→ B

β−→ C −→ 0

we have a corresponding exact hexagon

Ĥ0(G,A) Ĥ0(G,B)

Ĥ0(G,C) Ĥ0(G,C)

Ĥ0(G,B) Ĥ0(G,A)

←→α̂
0

←

→
β̂0

← →δ̂0

←→

δ̂0←

→

β̂0

←→

α̂0

Proof. This follows immediately from Theorems 23.32 and 23.37.

Corollary 23.41. Let G be a finite cyclic group. For any exact sequence of G-modules

0 −→ A
α−→ B

β−→ C −→ 0,

if any two of h(A), h(B), h(C) are defined then so is the third and h(B) = h(A)h(C).

Proof. Using the exact hexagon given by Corollary 23.40 we can compute the cardinality

h0(A) = #Ĥ0(G,A) = # ker α̂0# im α̂0 = # ker α̂0# ker β̂0.

Applying a similar calculation to Ĥ0(G,C) and Ĥ0(G,B) yields

h0(A)h0(C)h0(B) = # ker α̂0# ker β̂0# ker δ̂0# ker α̂0# ker β̂0# ker δ̂0.

Doing the same for Ĥ0(G,B), Ĥ0(G,A), Ĥ0(G,C) yields

h0(B)h0(A)h0(C) = # ker β̂0# ker δ̂0# ker α̂0# ker β̂0# ker δ̂0# ker α̂0 = h0(A)h0(C)h0(B).

If any two of h(A), h(B), h(C) are defined then at least four of the groups in the exact
hexagon are finite, and the remaining two are non-adjacent, but these two must then also
be finite. In this case we can rearrange the identity above to obtain h(B) = h(A)h(C).

Corollary 23.42. Let G be a finite cyclic group, and let A and B be G-modules. If h(A)
and h(B) are defined then so is h(A⊕B) = h(A)h(B).

Proof. Apply Corollary 23.41 to the split exact sequence 0→ A→ A⊕B → B → 0.

Lemma 23.43. Let G=〈g〉 be a finite cyclic group. If A is an induced, coinduced, or finite
G-module then h(A) = 1.
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Proof. If A is an induced or coinduced G-module then h0(A) = h0(A) = h(A) = 1, by
Theorem 23.34. If A is finite, then the exact sequence

0 −→ AG −→ A
g−1−→ A −→ AG −→ 0

implies #AG = # ker(g − 1) = # coker(g − 1) = #AG, and therefore

h0(A) = # ker N̂G = # coker N̂G = h0(A),

so h(A) = h0(A)/h0(A) = 1.

Corollary 23.44. Let G be a finite cyclic group and let A be a G-module that is a finitely
generated abelian group. Then h(A) = h(A/Ator) whenever either is defined.

Proof. Apply Corollary 23.41 and Lemma 23.43 to 0→ Ator → A→ A/Ator → 0.

Remark 23.45. The hypothesis of Corollary 23.44 actually guarantees that h(A) is defined,
but we won’t prove this here.

Corollary 23.46. Let G be a finite cyclic group and let A be a trivial G-module that is a
finitely generated abelian group. Then h(A) = (#G)r, where r is the rank of A.

Proof. We have A/Ator ' Zr, where Z is a trivial G-module. Then ZG = Z = ZG, and
N̂G : ZG → ZG is multiplication by #G, so h(Z) = # coker N̂G/# ker N̂G = #G. Now apply
Corollaries 23.42 and 23.44.

Lemma 23.47. Let G be a finite cyclic group and let α : A→ B be a morphism of G-modules
with finite kernel and cokernel. If either h(A) or h(B) is defined then h(A) = h(B).

Proof. Applying Corollary 23.41 to the exact sequences

0→ kerα→ A→ imα→ 0

0→ imα→ B → cokerα→ 0

yields h(A) = h(kerα)h(imα) = h(imα) = h(imα)h(cokerα) = h(B), by Lemma 23.43,
since kerα and cokerα are finite. The lemma follows.

Corollary 23.48. Let G be a finite cyclic group and let A be a G-module containing a
sub-G-module B of finite index. Then h(A) = h(B) whenever either is defined.

Proof. Apply Lemma 23.47 to the inclusion B → A.

23.7 A little homological algebra

In an effort to keep these notes self-contained, in this final section we present proofs of some
of the results from homological algebra that were used above. For the sake of concreteness we
restrict our attention to categories of modules (which includes abelian groups as Z-modules),
but everything in this section generalizes to suitable abelian categories. We use R to denote
an arbitrary (not necessarily commutative) ring (in earlier sections R was always Z or Z[G]).
Statements that use the term R-module without qualification should be understood to apply
in both the category of left R-modules and the category of right R-modules.
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23.7.1 Complexes

Definition 23.49. A chain complex C is a sequence of R-module morphisms

· · · d2−→ C2
d1−→ C1

d0−→ C0 −→ 0,

with dn◦dn+1 = 0; the dn are boundary maps. The nth homology group of C is the R-module
Hn(C) := Zn(C)/Bn(C), where Zn(C) := ker dn−1 and Bn(C) := im dn are the R-modules
of cycles and boundaries, respectively; for n < 0 we define Cn = 0 and dn is the zero map.

A morphism of chain complexes f : C → D is a sequence of R-module morphisms
fn : Cn → Dn that commute with boundary maps (so fn ◦ dn = dn ◦ fn+1).6 Such a
morphism necessarily maps cycles to cycles and boundaries to boundaries, yielding natural
morphisms Hn(f) : Hn(C) → Hn(D) of homology groups.7 We thus have a family of func-
tors Hn(•) from the category of chain complexes to the category of abelian groups. The
category of chain complexes has kernels and cokernels (and thus exact sequences). The set
Hom(C,D) of morphisms of chain complexes C → D is an abelian group under addition:
(f + g)n = fn + gn.

The category of chain complexes of R-modules contains direct sums and direct products:
if A and B are chain complexes of R-modules then (A⊕B)n := An⊕Bn and the boundary
maps dn : (A⊕B)n+1 → (A⊕B)n are defined component-wise: dn(a⊕ b) := dn(a)⊕ dn(b).
Because the boundary maps are defined component-wise, the kernel of the boundary map of
a direct sum is the direct sum of the kernels of the boundary maps on the components, and
similarly for images. It follows that Hn(A ⊕ B) ' Hn(A) ⊕Hn(B), and this isomorphism
commutes with the natural inclusion and projection maps in to and out of the direct sums
on both sides. In other words, Hn(•) is an additive functor (see Definition 23.16). This
extends to arbitrary (possibly infinite) direct sums, and also to arbitrary direct products,
although we will only be concerned with finite direct sums/products.8

Theorem 23.50. Associated to each short exact sequence of chain complexes

0 −→ A
α−→ B

β−→ C −→ 0

is a long exact sequence of homology groups

· · · −→ Hn+1(A)
Hn+1(α)−→ Hn+1(B)

Hn+1(β)−→ Hn+1(C)
δn−→ Hn(A)

Hn(α)−→ Hn(B)
Hn(β)−→ Hn(C) −→ · · ·

and this association maps morphisms of short exact sequences to morphisms of long exact
sequences. In other words, the family of functors Hn(•) is a homological δ-functor.

For n < 0 we have Hn(•) = 0, by definition, so this sequence ends at H0(C)→ 0.

Proof. For any chain complex C, let Yn(C) := Cn/Bn(C). Applying the snake lemma to
6We use the symbols dn to denote boundary maps of both C and D; in general, the domain and codomain

of any boundary or coboundary map should be inferred from context.
7In fact Hn(f) : Hn(C)→ Hn(D) is a morphism of R-modules, but in all the cases of interest to us, either

the homology groups are all trivial (as occurs for exact chain complexes, such as the standard resolution of
Z by Z[G]-modules), or R = Z (as in the chain complexes used to define the Ext and Tor groups below), so
we will generally refer to homology groups rather than homology modules.

8This does not imply that the Ext and Tor functors defined below commute with arbitrary direct sums
and direct products; see Remarks 23.62 and 23.66.
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Yn+1(A) Yn+1(B) Yn+1(C) 0

0 Zn(A) Zn(B) Zn(C)

←→αn+1

←→ dn

←→βn+1

←→ dn

←→

←→ dn

←→ ← →αn ← →βn

(where αn, βn, dn denote obviously induced maps) yields the exact sequence

Hn+1(A)
αn+1−→ Hn+1(B)

βn+1−→ Hn+1(C)
δn−→ Hn(A)

αn−→ Hn(B)
βn−→ Hn(G).

The verification of the commutativity of diagrams of long exact sequences of homology
groups associated to commutative diagrams of short exact sequences of chain complexes is
as in the proof of Theorem 23.8, mutatis mutandi.

Definition 23.51. Two morphisms f, g : C → D of chain complexes are homotopic if there
exist morphisms hn : Cn → Dn+1 such that fn − gn = dn ◦ hn + hn−1 ◦ dn−1 for all n ≥ 0
(where h−1 := 0); this defines an equivalence relation f ∼ g, since (a) f ∼ f (take h = 0),
(b) if f ∼ g via h then g ∼ f via −h, and (c) if f1 ∼ f2 via h1 and f2 ∼ f3 via h2 then
f1 ∼ f3 via h1 + h2.

Lemma 23.52. Homotopic morphisms of chain complexes f, g : C → D induce they some
morphisms of homology groups Hn(C)→ Hn(D); we have Hn(f) = Hn(g) for all n ≥ 0.

Proof. Let [z] ∈ Hn(C) = Zn(C)/Bn(C) denote the homology class z ∈ Zn(C). We have

fn(z)− gn(z) = dn(hn(z)) + hn−1(dn−1(z)) = dn(hn(z)) + 0 ∈ Bn(D),

thus Hn(f)([z])−Hn(g)([z]) = 0. It follows that Hn(f) = Hn(g) for all n ≥ 0.

Definition 23.53. A cochain complex C is a sequence of R-module morphisms

0 −→ C0 d0−→ C1 d1−→ C2 d2−→ · · ·

with dn+1◦dn = 0. The nth cohomology group of C is the R-moduleHn(C) :=Zn(C)/Bn(C),
where Zn(C) := ker dn and Bn(C) := im dn−1 are the R-modules of cocycles and cobound-
aries; for n < 0 we define Cn = 0 and dn is the zero map. A morphism of cochain complexes
f : C → D consists of R-module morphisms fn : Cn → Dn that commute with coboundary
maps, yielding natural morphisms Hn(f) : Hn(C)→ Hn(D) and a functors Hn(•) from the
category of cochain complexes to the category of abelian groups. Cochain complexes form a
category with kernels and cokernels, as well as direct sums and direct products (coboundary
maps are defined component-wise). Like Hn(•), the functor Hn(•) is additive and commutes
with arbitrary direct sums and direct products.

The set Hom(C,D) of morphisms of cochain complexes C → D forms an abelian group
under addition: (f + g)n = fn + gn. Morphisms of cochain complexes f, g : C → D are
homotopic if there are morphisms hn : Cn+1 → Dn such that fn−gn = hn ◦dn+dn−1 ◦hn−1
for all n ≥ 0 (where h−1 := 0); this defines an equivalence relation f ∼ g.9

Theorem 23.54. Associated to every short exact sequence of cochain complexes

0 −→ A
α−→ B

β−→ C −→ 0

9Note the order of composition in the homotopy relations for morphisms of chain/cochain complexes.
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is a long exact sequence of homology groups

· · · −→ Hn(A)
Hn(α)−→ Hn(B)

Hn(β)−→ Hn(C)
δn−→ Hn+1(A)

Hn+1(α)−→ Hn+1(B)
Hn+1(β)−→ Hn+1(C) −→ · · ·

and this association maps morphisms of short exact sequences of morphisms of long exact
sequences, that is, the family of functors Hn(•) is a cohomological δ-functor.

For n < 0 we have Hn(•) = 0, by definition, so this sequence begins with 0→ H0(A).

Proof. Adapt the proof of Theorem 23.50.

Lemma 23.55. Homotopic morphisms of cochain complexes f, g : C → D induce the same
morphisms of cohomology groups Hn(C)→ Hn(D); we have Hn(f) = Hn(g) for all n ≥ 0.

Proof. Adapt the proof of Lemma 23.52.

23.7.2 Projective and injective resolutions

A projective R-module P has the property that if π : M � N is a surjective morphism of
R-modules, every R-module morphism ϕ : P → N factors through π:

P

M N

←→ ϕ←→∃φ

←�π

Projective modules are characterized by the property that HomR(P, •) is an exact functor.
An injective R-module I has the property that if π : I ↪→ J is an injective morphism of

R-modules, every R-module morphism ϕ : I → K factors through π:

J K

I

←↩ →π

←→ ϕ ←→

∃φ

Injective modules are characterized by the property that HomR(•, I) is an exact functor.

Definition 23.56. Let M be an R-module. A projective resolution of M is an exact chain
complex P with P0 = M and Pn projective for all n > 0. A injective resolution of M is an
exact cochain complex I with I0 = M and In projective for all n > 0. When we refer to
P as a projective resolution (rather than an exact chain complex), we refer only to chain
complex · · · → P2 → P1 → 0, and when we refer to I as an injective resolution (rather than
an exact cochain complex), we refer only to the cochain complex 0→ I1 → I2 → · · · .

Every R-module has a projective resolution, since (as noted earlier), every R-module M
has a free resolution (we can always construct d0 : P1 �M by taking P1 to be free module
with basis M , then similarly construct d1 : P2 � ker d0, and so on).

Proposition 23.57. Let M and N be R-modules with projective resolutions P and Q and
injective resolutions I and J , respectively. Every R-module morphism α0 : M → N extends
to a morphism α : P → Q of chain complexes, and to a morphism α : I → J of cochain
complexes, both of which are unique up to homotopy.
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Proof. We first consider the projective resolutions, and inductively construct αn : Pn → Qn
for n ≥ 1 (the base case α0 : P0 → Q0 is given by α : M → N). Suppose we have constructed
a commutative diagram of exact sequences

· · · Pn+1 Pn Pn−1 · · · P1 M 0

· · · Qn+1 Qn Pn−1 · · · Q1 N 0

←→dn+1 ←→dn

←→ αn

←→dn−1

←→ αn−1

←→dn−2 ←→d1

←→ ···

←→d0

←→ α1

←→ α0

←→

←→

←→dn+1 ←→dn ←→dn−1 ←→dn−2 ←→d1 ←→d0 ←→

Then dn−1 ◦ αn ◦ dn = αn−1 ◦ dn−1 ◦ dn = 0, so im(αn ◦ dn) ⊆ ker dn−1 = im dn. We now
define αn+1 : Pn+1 → Qn+1 as a pullback of the morphism αn ◦ dn : Pn+1 → im dn along the
surjection dn : Qn+1 → im dn such that dn ◦ αn+1 = αn ◦ dn.

Now suppose β : P → Q is another morphism of projective resolutions with β0 = α0,
and let γ = α − β. To show that α and β are homotopic it suffices to construct maps
hn : Pn → Qn+1 such that dn ◦ hn = γn − hn−1 ◦ dn−1 (where h−1 = d−1 = 0). We have
γ0 = α0 − β0 = 0, so let h0 := 0 and inductively assume dn ◦ hn = γn − hn−1 ◦ dn−1. Then

dn ◦ (γn+1 − hn ◦ dn) = dn ◦ γn+1 − (dn ◦ hn) ◦ dn = γn ◦ dn − (γn − hn−1 ◦ dn−1) ◦ dn = 0,

so im(γn+1−hn ◦dn) ⊆ Bn+1(Q). The R-module Pn+1 is projective, so we can pullback the
morphism (γn+1 − hn ◦ dn) : Pn+1 → Bn+1(Q) along the surjection dn+1 : Qn+1 → Bn+1(Q)
to obtain hn+1 satisfying dn+1 ◦ hn+1 = γn+1 − hn ◦ dn as desired.

The injective resolutions are handled similarly. Suppose we have constructed a commu-
tative diagram of exact sequences

0 M I1 · · · In−1 In In+1 · · ·

0 N J1 · · · Jn−1 Jn Jn+1 · · ·

←→

←→ α0

←→d0

←→ α1

←→d1

←→ ···

←→dn−2

←→ αn−1

←→dn−1

←→ αn

←→dn ←→dn+1

←→ ←→d0 ←→d1 ←→dn−2 ←→dn−1 ←→dn ←→dn+1

Then dn ◦ αn ◦ dn−1 = dn ◦ dn−1 ◦ αn−1 = 0, so ker dn = im dn−1 ⊆ ker(dn ◦ αn). We
now define αn+1 : In+1 → Jn+1 as the map induced by a pushforward of the morphism
dn◦αn : In → Jn+1 along the injection dn : In/ ker(dn)→ In+1 such that dn◦αn+1 = αn◦dn;
here we are using the fact the Jn+1 is injective and ker dn ⊆ ker(dn ◦ αn).

The proof of uniqueness up to homotopy proceeds similarly.

23.7.3 Hom and Tensor

If M and N are R-modules, the set HomR(M,N) of R-module morphisms M → N forms
an abelian group under pointwise addition (so (f + g)(m) := f(m) + g(m)) that we may
view as a Z-module. For each R-module A we have a contravariant functor HomR(•, A) that
sends each R-module M to the Z-module

M∗ := HomR(M,A)

and each R-module morphism ϕ : M → N to the Z-module morphism

ϕ∗ : HomR(N,A)→ HomR(M,A)

f 7→ f ◦ ϕ.
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To check this, note that

ϕ∗(f + g) = (f + g) ◦ ϕ = f ◦ ϕ+ g ◦ ϕ = ϕ∗(f) + ϕ∗(g),

so ϕ∗ is a morphism of Z=modules (homomorphism of abelian groups), and

id∗M = (f 7→ f ◦ idM ) = (f 7→ f) = idM∗ ,

(φ ◦ ϕ)∗ = (f 7→ f ◦ φ ◦ ϕ) = (f 7→ f ◦ ϕ) ◦ (f 7→ f ◦ φ) = ϕ∗ ◦ φ∗,

thus HomR(•, A) is a contravariant functor.

Lemma 23.58. Let ϕ : M → N and φ : N → P be morphisms of R-modules. The sequence

M
ϕ−→ N

φ−→ P −→ 0

is exact if and only if for every R-module A the sequence

0 −→ HomR(P,A)
φ∗−→ HomR(N,A)

ϕ∗−→ HomR(M,A)

is exact.

Proof. (⇒): If φ∗(f) = f ◦ φ = 0 then f = 0, since φ is surjective, so φ∗ is injective. We
have ϕ∗◦φ∗ = (ϕ◦φ)∗ = 0∗ = 0, so imφ∗ ⊆ kerϕ∗. Let φ−1 : P

∼→ N/ kerφ. Each g ∈ kerϕ∗

vanishes on imϕ = kerφ inducing ḡ : N/ kerφ→ A with g = ḡ ◦ φ−1 ◦ φ ∈ imφ∗.
(⇐): For A = P/ imφ and π : P → P/ imφ the projective map, we have φ∗(π) = 0

and therefore π = 0, since φ∗ is injective, so P = imφ and φ is surjective. For A = P we
have 0 = (ϕ∗ ◦ φ∗)(idP ) = idP ◦φ ◦ ϕ = φ ◦ ϕ, so imϕ ⊆ kerφ. For A = N/ imϕ, and
π : N → N/ imϕ the projection map, we have π ∈ kerϕ∗ = imφ∗, thus π = φ∗(σ) = σ ◦ φ
for some σ ∈ Hom(P,A). Now π(kerφ) = σ(φ(kerφ)) = 0 implies kerφ ⊆ kerπ = imϕ.

Definition 23.59. A sequence of morphisms 0 → A
f→ B

g→ C → 0 is left exact if it is
exact at A and B (ker f = 0 and im f = ker g), and right exact if it is exact at B and C
(im f = ker g and im g = C). A functor that takes exact sequences to left (resp. right) exact
sequences is said to be left exact (resp. right exact).

Corollary 23.60. For any R-module A the functor HomR(•, A) is left exact.

Proof. This follows immediately from the forward implication in Lemma 23.58.

Corollary 23.61. For any R-module A, the functor HomR(•, A) is an additive functor.

Proof. See [6, Lemma 12.7.2] for a proof that this follows from left exactness; it is easy to
check directly in any case.

Remark 23.62. Corollary 23.61 implies that HomR(•, A) commutes with finite direct sums,
but it does not commute with infinite direct sums (direct products are fine).

Remark 23.63. The covariant functor HomR(A, •) that sends ϕ : M → N to (f 7→ ϕ ◦ f)
is also left exact.

If M is a right R-module and A is a left R-module, the tensor product M ⊗R A is an
abelian group consisting of sums of pure tensors m⊗ a with m ∈M and a ∈ A satisfying:
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• m⊗ (a+ b) = m⊗ b+m⊗ b;
• (m+ n)⊗ a = m⊗ a+m⊗ a;
• mr ⊗ a = m⊗ ra.

For each left R-module A we have a covariant functor • ⊗R A that sends each right R-
module M to the Z-module

M∗ := M ⊗R A,

and each right R-module morphism ϕ : M → N to the Z-module morphism

ϕ∗ : M ⊗R A→ N ⊗R A
m⊗ a 7→ ϕ(m)⊗ a

For each left R-module A we also have a covariant functor HomZ(A, •) that sends each
Z-module B to the right R-module HomZ(A,B) with ϕ(a)r := ϕ(ra) and each Z-module
morphism ϕ : B → C to the right R-module morphism Hom(A,B) → Hom(A,C) defined
by f 7→ ϕ ◦ f . Note that (ϕrs)(a) = ϕ(rsa) = (ϕr)(sa) = ((ϕr)s)(a), so HomZ(A,B) is
indeed a right R-module.

For any abelian group B there is a natural isomorphism of Z-modules

HomZ(M ⊗R A,B)
∼−→ HomR(M,HomZ(A,B)) (3)

ϕ 7→ (m 7→ (a 7→ ϕ(m⊗ a)))

(m⊗ a 7→ φ(m)(a))←[ φ

The functors • ⊗R A and HomZ(A, •) are thus adjoint functors between the categories of
right R-modules and Z-modules (if we fix B, the isomorphism in (3) is also natural in M).

Lemma 23.64. For any left R-module the functor • ⊗R A is right exact.

Proof. Let
0 −→M

ϕ−→ N
φ−→ P −→ 0,

be an exact sequence of right R-modules. For any
∑

i pi ⊗ ai ∈ P∗ we can pick ni ∈ N
such that φ(ni) = pi and then φ(

∑
i ni ⊗ a) =

∑
i pi ⊗ a, thus φ∗ is surjective. For any∑

imi ⊗ ai ∈M ⊗R A we have φ∗(ϕ∗(
∑

imi ⊗ ai)) =
∑

i φ(ϕ(mi))⊗ ai =
∑

i 0⊗ ai = 0, so
imϕ∗ ⊆ kerφ∗. To prove imϕ∗ = kerφ∗ it suffices to show that N∗/ imϕ∗ ' P∗, since the
surjectivity of φ∗ implies N∗/ kerϕ∗ ' P∗. For every abelian group B the sequence

0 −→ HomR(P,HomZ(A,B))
φ∗−→ HomR(N,HomZ(A,B))

φ∗−→ HomR(M,HomZ(A,B))

is left exact (by applying Corollary 23.60 to the right R-module HomZ(A,B); note that the
corollary applies to both left and right R-modules). Equivalently, by (3),

0 −→ HomZ(P∗, B)
φ∗∗−→ HomZ(N∗, B)

ϕ∗∗−→ HomZ(M∗, B),

Applying Lemma 23.58 and the surjectivity of φ∗ yields the desired right exact sequence

M∗
ϕ∗−→ N∗

φ−→ P∗ −→ 0.

Corollary 23.65. For any left R-module A, the functor • ⊗R A is an additive functor.
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Proof. See [6, Lemma 12.7.2] for a proof that this follows from right exactness; it is easy to
check directly in any case.

Remark 23.66. Corollary 23.65 implies that •⊗RA commutes with finite direct sums, and
in fact it commutes with arbitrary direct sums (but not direct products).

Remark 23.67. For any right R-module A the functor A⊗R • is also right exact.

If A is an R-module and C is a chain complex of R-modules, applying the functor
Hom(•, A) to the R-modules Cn and boundary maps dn : Cn+1 → Cn yields a cochain
complex C∗ of Z-modules Cn := C∗n and coboundary maps dn := d∗n,10 and morphisms
f : C → D of chain complexes become morphisms f∗ : C∗ → D∗ of cochain complexes. We
thus also have a contravariant left exact functor from the category of chain complexes to
the category of cochain complexes.

Proposition 23.68. Let A be an R-module and let •∗ denote the application of the functor
Hom(•, A). Let f, g : C → D be homotopic morphisms of chain complexes of R-modules.
Then f∗, g∗ : D∗ → C∗ are homotopic morphisms of cochain complexes of Z-modules.

Proof. The morphisms f and g are homotopic, so their exist morphisms hn : Cn → Dn+1

such that fn − gn = dn ◦ hn + hn−1 ◦ dn−1 for all n ≥ 0. Applying the contravariant functor
Hom(•, A) yields

f∗n − g∗n = h∗n ◦ d∗n + d∗n−1 ◦ h∗n−1,

where h∗n : Dn+1 → Cn for all n ≥ 0, with h−1 = 0. Thus f∗ and g∗ are homotopic.

Proposition 23.69. Let A be a left R-module and let •∗ denote the application of the functor
• ⊗R A. Let f, g : C → D be homotopic morphisms of chain complexes of right R-modules.
Then f∗, g∗ : C∗ → D∗ are homotopic morphisms of chain complexes of Z-modules.

Proof. The morphisms f and g are homotopic, so their exist morphisms hn : Cn → Dn+1

such that fn − gn = dn ◦ hn + hn−1 ◦ dn−1 for all n ≥ 0. Applying the covariant functor
• ⊗R A yields

fn∗ − gn∗ = dn∗ ◦ hn∗ + hn−1∗ ◦ dn−1∗,

where hn∗ : Cn+1 → Dn for all n ≥ 0, with h−1 = 0. Thus f∗ and g∗ are homotopic.

23.7.4 Ext and Tor functors

Recall that a projective resolution P of an R-module M arises from an exact chain complex
· · · → P2 → P1 → M → 0 but refers to the (not necessarily exact) chain complex · · · →
P2 → P1 → 0. In what follows we use the symbol P to refer to both chain complexes,
but will explicitly say “exact chain complex” when we refer to the former and “projective
resolution” when we refer to the latter.

Theorem 23.70. Let P , Q be projective resolutions of an R-module M , let A be an R-
module, and let •∗A denote HomR(•, A). Then Hn(P ∗A) ' Hn(Q∗A) for all n ≥ 0.

10This justifies our indexing the boundary maps dn : Cn+1 → Cn rather than dn : Cn → Cn−1.

18.785 Fall 2021, Lecture #23, Page 24

http://stacks.math.columbia.edu/tag/010M


Proof. Let f : P → Q and g : Q → P be extensions of the identity morphism idM to mor-
phisms of the exact chain complexes P and Q given by Proposition 23.57. The composition
g ◦ f : P → P is an extension of idM , as is idP , so g ◦ f is homotopic to idP , by Proposi-
tion 23.57, and f ◦g is similarly homotopic to idQ. This remains true if we now restrict to the
projective resolutions P and Q (the chain complexes · · · → P1 → 0 and · · · → Q1 → 0). The
homotopy condition at the rightmost square is trivially satisfied because three of morphisms
are zero. Let f and g now denote their restrictions to the projective resolutions P and Q.

Applying the contrvariant functor •∗A yields homotopic morphisms f∗A : Q∗A → P ∗A and
g∗A : P ∗A → Q∗A of cochain complexes with f∗A ◦ g∗A homotopic to (idP )∗A = idP ∗A and g∗A ◦ f∗A
homotopic to (idQ)∗A = idQ∗A , by Proposition 23.68. By Lemma 23.55, f∗A and g∗A induce
isomorphims Hn(P ∗A) ' Hn(Q∗A) for all n ≥ 0.

Definition 23.71. Let A and M be R-modules. ExtnR(M,A) is the abelian group Hn(P ∗A)
uniquely determined by Theorem 23.70 using any projective resolution P ofM . If α : A→ B
is a morphism of R-modules the map ϕ 7→ α ◦ ϕ induces a morphism of cochain complexes
P ∗A → P ∗B and morphisms ExtnR(M,α) : ExtnR(M,A)→ ExtnR(M,B) for each n ≥ 0.

We thus have a family of functors ExtnR(M, •) from the category of R-modules to the
category of abelian groups that is a cohomological δ-functor (by Theorem 23.54).

Remark 23.72. One can also define ExtnR(M,A) using injective resolutions; see [7, §2.7]
for a proof that this yields the same result.

Lemma 23.73. Let M be an R-module. The functors ExtnR(M, •) are additive functors and
thus commute with finite direct sums and products.

Proof. This follows from Corollary 23.61 and the fact Hn(•) is an additive functor.

Lemma 23.74. For any two R-modules M and A we have Ext0R(M,A) ' HomR(M,A).

Proof. Let · · · → P2 → P1 →M → 0 be the exact chain complex associated to a projective
resolution P of M . Applying •∗ := HomR(•, A) yields 0→M∗ → P ∗1 → P ∗2 → · · · with

Ext0R(M,A) = H0(P ∗A) = Z0(P ∗A)/B0(P ∗A) = ker(P ∗1 → P ∗2 )/ im(0→ P ∗1 ) 'M∗.

Theorem 23.75. Let P , Q be projective resolutions of a right R-module M . Let A be a left
R-module, and let •A∗ denote • ⊗R A. Then Hn(PA∗ ) ' Hn(QA∗ ) for n ≥ 0.

Proof. Let f : P → Q and g : Q → P be extensions of the identity morphism idM given
by Proposition 23.57. As in the proof of Theorem 23.70, use extensions of the identity
morphism idM to obtain morphisms f : P → Q and g : Q→ P of projective resolutions with
g ◦ f homotopic to idP and f ◦ g homotopic to idQ.

Applying the covariant functor •A∗ yields homotopic morphisms fA∗ : PA∗ → QA∗ and
gA∗ : QA∗ → PA∗ , with fA∗ ◦ gA∗ homotopic to idPA

∗
and fA∗ ◦ gA∗ homotopic to idQA

∗
. By

Lemma 23.52, fA∗ and gA∗ induce isomorphisms Hn(PA∗ ) ' Hn(QA∗ ) for all n ≥ 0.

Definition 23.76. Let A a left R-module and let M be a right R-module. TorRn (M,A)
is the abelian group Hn(PA∗ ) uniquely determined by Theorem 23.75 using any projective
resolution P of M . If α : A→ B is a morphism of left R-modules the map x⊗a 7→ x⊗ϕ(a)
induces a morphism PA∗ → PB∗ and morphisms TorRn (M,α) : TorRn (M,A)→ ExtRn (M,B) for
each n ≥ 0. This yields a family of functors TorRn (M, •) from the category of left R-modules
to the category of abelian groups that is a homological δ-functor (by Theorem 23.50).
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Lemma 23.77. Let M be a right R-module. The functors TorRn (M, •) are additive functors
and thus commute with finite direct sums and products.

Proof. This follows from Corollary 23.65 and the fact Hn(•) is an additive functor.

Lemma 23.78. For any two R-modules M and A we have TorR0 (M,A) 'M ⊗R A.

Proof. Let · · · → P2 → P1 →M → 0 be the exact chain complex associated to a projective
resolution P of M . Applying • ⊗R A yields the exact sequence · · ·P2∗ → P1∗ → M∗ → 0,
and we observe that

TorR0 (M,A) = H0(P∗) = Z0(P∗)/B0(P∗) = ker(P1∗ → 0)/ im(P2∗ → P1∗) 'M∗,
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