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24 Artin reciprocity in the unramified case

Let L/K be an abelian extension of number fields. In Lecture 22 we defined the norm
group Tm

L/K
:= NL/K(ImL )Rm

K (see Definition 22.27) that we claim is equal to the kernel of
the Artin map ψm

L/K : ImK → Gal(L/K), provided that the modulus m is divisible by the
conductor of L (see Definition 22.24). In Theorem 22.29 we proved the inequality

[ImK : Tm
L/K ] ≤ [L : K] = [ImK : kerψm

L/K ] (1)

(the equality follows from the surjectivity of the Artin map proved in Theorem 21.19). We
now want to prove the reverse inequality

[ImK : Tm
L/K ] ≥ [L : K]. (2)

Which will show that the subgroups Tm
L/K and kerψm

L/K have the same index in ImK . One
can then apply an argument due to Artin (see [2, V.5.6]) to show that these equal index
subgroups are in fact equal, yielding isomorphisms

ImK/Tm
L/K

∼−→ Im/ kermL/K
∼−→ Gal(L/K). (3)

This result is known as the Artin reciprocity law. Note that TmL/K contains Rm
K , so ImK/Tm

L/K

is a quotient of the ray class group ClmK := ImK/Rm
K , thus the Artin reciprocity law implies

that for every finite abelian extension L/K, the Galois group Gal(L/K) is isomorphic to a
quotient of ClmK , for any modulus m divisible by the conductor of L. Moreover, it tells us
exactly which quotient: the one induced by the image of the norm map ImL → ImK

In this lecture we will prove (2) for cyclic extensions L/K when the modulus m is trivial
(which forces L/K to be unramified).

24.1 Some cohomological calculations

If L/K is a finite Galois extension of global fields with Galois group G, then we can naturally
view any of the abelian groups L, L×, OL, O×L , IL, PL as G-modules.

When G = 〈σ〉 is cyclic we can compute the Tate cohomology groups of any of these
G-modules A, and their associated Herbrand quotients h(A). The Herbrand quotient is
defined as the ratio of the cardinalities of

Ĥ0(A) := Ĥ0(G,A) := coker N̂G = AG/ im N̂G =
A[σ − 1]

NG(A)
,

Ĥ0(A) := Ĥ0(G,A) := ker N̂G = AG[N̂G] =
A[NG]

(σ − 1)(A)
,

if both are finite. We can also compute Ĥ0(A) = Ĥ−1(A) ' Ĥ1(A) = H1(A) as 1-cocycles
modulo 1-coboundaries whenever it is convenient to do so. In the interest of simplifying the
notation we omit G from our notation whenever it is clear from context.

For the multiplicative groups O×L , L×, IL,PL, the norm element NG :=
∑n

i=1 σ
i corre-

sponds to the action of the field norm NL/K and ideal norm NL/K that we have previously
defined, provided that we identify the codomain of the norm map with a subgroup of its
domain. For the groups L× and O×L this simply means identifying K× and O×K as subgroups
via inclusion. For the ideal group IK we have a natural extension map IK ↪→ IL defined by
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I 7→ IOL that restricts to a map PK ↪→ PL.1 Under this convention taking the norm of an
element of IL that is (the extension of) an element of IK corresponds to the map I 7→ I#G,
as it should, and IK is a subgroup of the G-invariants IGL .2

When A is multiplicative, the action of σ − 1 on a ∈ A is (σ − 1)(a) = σ(a)/a, but we
will continue to use the notation (σ− 1)(A) and A[σ− 1] to denote the image and kernel of
this action. Conversely, when A is additive, the action of NG corresponds to the trace map,
not the norm map. In order to lighten the notation, in this lecture we use N to denote both
the (relative) field norm NL/K and the ideal norm NL/K .

Theorem 24.1. Let L/K be a cyclic Galois extension with Galois group G := Gal(L/K).

(i) Ĥ0(L) and Ĥ0(L) are both trivial.

(ii) Ĥ0(L×) ' K×/N(L×) and Ĥ0(L
×) is trivial.

Proof. (i) The trace map from L to K is not identically zero (by Theorem 5.20, since L/K
is separable), so it must be surjective, since it is a K-linear transformation whose codomain
has dimension 1. Thus NG(L) = T (L) = K and Ĥ0(L) = LG/NG(L) = K/K is trivial. By
the normal basis theorem, we can fix γ ∈ L so that (γ, σ(γ), . . . , σn−1(γ)) is a K-basis for
L ' Kn on which σ acts on vectors in Kn as a cyclic shift. For any a ∈ Kn with trace zero,
we may define b ∈ Kn by bi = −

∑
j≤i aj so that σ(b)−b = (bn−b1, b1−b2, . . . , bn−1−bn) = a.

It follows that L[NG] = (σ − 1)(L) and Ĥ0(L) is trivial.
(ii) We have Ĥ0(L×) = (L×)G/NG(L

×) = K×/N(L×). The argument that Ĥ0(L
×) is

trivial is as in (i): given a ∈ Kn with norm one we define b ∈ Kn by bi := (
∏
j≤i ai)

−1 so
that σ(b)/b = a. It follows that L×[NG] = (σ − 1)(L×) and Ĥ0(L

×) is trivial.

Remark 24.2. If one replaces Ĥ0 with H1 in Theorem 24.1 (note that Ĥ0 = H1 in the
cyclic case by Theorem 23.37) the result holds for arbitrary Galois extensions, as shown by
Noether [4], but the proof then involves showing that every 1-cocycle is a 1-coboundary.

Corollary 24.3 (Hilbert Theorem 90). Let L/K be a finite cyclic extension with Galois
group Gal(L/K) = 〈σ〉. Then N(α) = 1 if and only if α = β/σ(β) for some β ∈ L×.

Our next goal is to compute the Herbrand quotient of O×L (in the case that L/K is a
finite cyclic extension of number fields). For this we will apply a variant of Dirichlet’s unit
theorem due to Herbrand, but first we need to discuss infinite places of number fields.

If L/K is a Galois extension of global fields, the Galois group Gal(L/K) acts on the set
of places w of L via the action w 7→ σ(w), where σ(w) is the equivalence class of the absolute
value defined by ‖α‖σ(w) := ‖σ(α)‖w. This action permutes the places w lying above a given
place v of K; if v is a finite place corresponding to a prime p of K, this is just the usual
action of the Galois group on the set {q|p}.

Definition 24.4. Let L/K be a Galois extension of global fields and let w be a place of L.
The decomposition group of w is its stabilizer in Gal(L/K):

Dw := {σ ∈ Gal(L/K) : σ(w) = w}.

If w corresponds to a prime q of OL then Dw = Dq is also the decomposition group of q.
1The induced map ClK → ClL need not be injective; extensions of non-principal ideals may be principal.

Indeed, when L is the Hilbert class field every OK-ideal extends to a principal OL-ideal; this was conjectured
by Hilbert and took over 30 years to prove. You will get a chance to prove it on Problem Set 10.

2Note that IG
L = IK only when L/K is unramified; see Lemma 24.9 below.
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Now let L/K be a Galois extension of number fields. If we write L ' Q[x]/(f) then we
have a one-to-one correspondence between embeddings of L into C and roots of f in C. Each
embedding of L into C restricts to an embedding of K into C, and this induces a map that
sends each infinite place w of L to the infinite place v of K that w extends. This map may
send a complex place to a real place; this occurs when a pair of distinct complex conjugate
embeddings of L restrict to the same embedding of K (which must be a real embedding).
In this case we say that the place v (and w) is ramified in the extension L/K, and define
the ramification index ev := 2 when this holds (and put ev := 1 otherwise). This notation
is consistent with our notation ev := ep for finite places v corresponding to primes p of K.
Let us also define fv := 1 for v|∞ and put gv := #{w|v} so that the following formula
generalizing Corollary 7.5 holds for all places v of K:

evfvgv = [L : K].

Definition 24.5. For a Galois extension of number fields L/K we define the integers

e0(L/K) :=
∏
v-∞

ev, e∞(L/K) :=
∏
v|∞

ev, e(L/K) := e0(L/K)e∞(L/K).

Let us now write L ' K[x]/(g). Each embedding ofK into C gives rise to [L : K] distinct
embeddings of L into C that extend it, one for each root of g (use the embedding ofK to view
g as a polynomial in C[x], then pick a root of g in C). The transitive action of Gal(L/K)
on the roots of g induces a transitive action on these embeddings and their corresponding
places. Thus for each infinite place v of K the Galois group acts transitively on {w|v}, and
either every place w above v is ramified (this can occur only when v is real and [L : K] is
divisible by 2), or none are. It follows that each unramified place v of K has [L : K] places
w lying above it, each with trivial decomposition group Dw, while each ramified (real) place
v of K has [L : K]/2 (complex) places w lying above it, each with decomposition group Dw

of order 2 (its non-trivial element corresponds to complex conjugation in the corresponding
embeddings), and the Dw are all conjugate.

Theorem 24.6 (Herbrand unit theorem). Let L/K be a Galois extension of number
fields. Let w1, . . . wr+s be the archimedean places of L, where r and s are the number of real
and complex places of L, respectively. There exist units ε1, . . . , εr+s ∈ O×L such that

(i) σ(εi) = εj if and only if σ(wi) = wj, for all σ ∈ Gal(L/K);

(ii) The set {ε1, . . . , εr+s} generates a finite index subgroup of O×L ;
(iii)

∏
i εi = 1, and every relation among the εi is a multiple of this one.

Proof. The theorem holds with ε = 1 if r+s = 1 so assume r+s > 1. Pick u1, . . . , ur+s ∈ O×L
such that ‖ui‖wj < 1 for i 6= j and ‖ui‖wi > 1. Such ui may be constructed as in the proof
of Dirichlet’s unit theorem: fix B > ( 2π )

s
√
|DL|, fix generators γk for the principal OL ideals

of absolute norm at most B, let M = (r + s)maxj 6=i,k ‖γk‖wj , define an Arakelov divisor c
of size B with cv = 1 for v 6 | ∞ and cwj = 1/M for j 6= i, use Proposition 15.9 to obtain
ai ∈ OL with ‖ai‖wj ≤ 1/M for j 6= i and N(ai) ≤ B, and take ui = ai/γ ∈ O×L , where γ is
our chosen generator for (ai).

Now let αi :=
∏
σ∈Dwi

σ(ui) ∈ O×L . We have

‖αi‖wi =
∏

σ∈Dwi

‖σ(ui)‖wi =
∏

σ∈Dwi

‖ui‖σ(wi) =
∏

σ∈Dwi

‖ui‖wi > 1,
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and for j 6= i we have

‖αi‖wj =
∏

σ∈Dwi

‖σ(ui)‖wj =
∏

σ∈Dwi

‖ui‖σ(wj) < 1,

since σ ∈ Dwi fixes wi and permutes the wj with j 6= i; note that αi is fixed by σ ∈ Dwi .
The Galois group G := Gal(L/K) partitions the wi intom orbits, wherem is the number

of archimedean place of v. Let us index the wi and αi so that w1, . . . , wm lie in distinct
orbits. We then have wj = σj(wi(j)) for a unique i(j) ≤ m, with σj in a unique coset of
Dwi(j)

; let us fix a choice of σj ∈ σjDwi(j)
. We now define βj := σj(αi(j)); the value of βj

does not depend on our choice of σj because αi is fixed by Dwi . The βj satisfy (i), and
Lemma 24.7 below implies that they also satisfy (ii), since they are a permutation of the αi.

We must have
∏
i β

ni
i = 1 for some tuple (n1, . . . , nr+s) ∈ Zr+s, since O×L has rank

r + s− 1. The set of all such tuples spans a rank-1 submodule of Zr+s from which we may
choose a generator (n1, . . . , nr+s). If now put εi := βni

i then the εi satisfy (iii). The εi also
satisfy (ii), since the εi generate a finite index subgroup of the group generated by the βi.
We must have ni = nj whenever wi and wj lie in the same Galois orbit (otherwise applying
some σ ∈ G to

∏
i β

ni
i = 1 would yield a relation that is not a multiple of the one we have).

It follows that the εi satify (i), since the βi do.

Lemma 24.7. Let K be a number field with archimedean places v1, . . . , vr+s. Any units
u1, . . . .ur+s ∈ O×L that satisfy ‖ui‖vj < 1 for j 6= i generate a finite index subgroup of O×K .

Proof. Recall Log : K×R → Rr+s given by (αv) 7→ (log ‖αv‖v) from the proof of Dirichlet’s
Unit Theorem (see Proposition 15.11). The restriction to O×K ⊆ K× ↪→ KR has finite kernel,
so it suffices to to show Log({ui}) generates a finite index subgroup of Log(O×K) ' Zr+s−1.

Let ei = (ei1, ei2, . . . , ei(r+s)) = Log(ui). It suffices to show that e1, . . . , er+s−1 are R-
linearly independent; they then span a free Z-module of rank r+s−1 in Log(O×K) ' Zr+s−1,
which must have finite index. Consider the (r+ s−1)× (r+ s−1) matrix M = (eij). It has
positive diagonal entries, negative nondiagonal entries, and positive row sums (

∑r+s
j=1 eij = 0

and ei(r+s) < 0 imply
∑r+s−1

j=1 eij > 0). Suppose that Mx = 0 has a nonzero solution
with x1 ≥ maxj |xj | > 0 (such a solution can be obtained from any nonzero solution by
re-indexing columns and negating x if needed). We have∑

j

m1jxj = m11x1 −
∑
j>1

|m1j |xj ≥ m11x1 −
∑
j>1

|m1j |x1 = x1
∑
j

m1j > 0,

since
∑

jm1j > 0, but this contradicts Mx = 0.

Theorem 24.8. Let L/K be an extension of number fields with cyclic Galois group G = 〈σ〉.
The Herbrand quotient of the G-module O×L is

h(O×L ) =
e∞(L/K)

[L : K]
.

Proof. Let ε1, . . . , εr+s ∈ O×L be as in Theorem 24.6, and let A be the subgroup of O×L they
generate, viewed as a G-module. By Corollary 23.48, h(A) = h(O×L ) if either is defined,
since A has finite index in O×L , so we will compute h(A).

For each field embedding φ : K ↪→ C, let Eφ be the free Z-module with basis {ϕ|φ}
consisting of the n := [L : K] embeddings ϕ : L ↪→ C with ϕ|K = φ, equipped with the
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G-action given by σ(ϕ) := ϕ◦σ. Let v be the infinite place of K corresponding to φ, and let
Av be the free Z-module with basis {w|v} consisting of places of L that extend v, equipped
with the G-action given by the action of G on {w|v}. Let π : Eφ → Av be the G-module
morphism sending each embedding ϕ|φ to the corresponding place w|v. Let m := #{w|v}
and define τ := σm; then τ is either trivial or has order 2, and in either case generates the
decomposition group Dw for all w|v (since G is abelian). We have an exact sequence

0→ kerπ −→ Eφ
π−→ Av → 0,

with kerπ = (τ − 1)Eφ. If v is unramified then kerπ = 0 and h(Av) = h(Eφ) = 1, since
Eφ ' Z[G] ' IndG(Z), by Lemma 23.43. Otherwise, order {w|v} = {w0, . . . , wm−1} and
{ϕ|φ} = {ϕ0, . . . , ϕn−1} so that wi = {ϕi, ϕm+i}. We then have

kerπ = (τ − 1)Eφ =

 ∑
0≤i<m

ai(ϕi − ϕm+i) : ai ∈ Z

 ,

which is annihilated by NG, and kerπ[σ − 1] = (kerπ)G = 0, since τ = σm acts as −1, so
h0(kerπ) = 1. Now (σ − 1)(kerπ) = {

∑
ai(ϕi − ϕm+i) : ai ∈ Z with

∑
ai ≡ 0 mod 2} has

index 2 in kerπ[NG] = kerπ, so h0(kerπ) = 2 and h(kerπ) = 1/2. Corollary 23.41 implies
h(Av) = h(Eφ)/h(kerπ) = 2, and in every case we have h(Av) = ev, where ev ∈ {1, 2} is
the ramification index of v.

Now consider the exact sequence of G-modules

0 −→ Z −→
⊕
v|∞

Av
ψ−→ A −→ 1

where ψ sends each infinite place w1, . . . , wr+s of L to the corresponding ε1, . . . , εr+s ∈ A
given by Theorem 24.6. The kernel of ψ is the trivial G-module (

∑
iwi)Z ' Z, since we

have ψ(
∑

iwi) =
∏
i εi = 1 and no other relations among the εi, by Theorem 24.6. We

have h(Z) = #G = [L : K], by Corollary 23.46, and h(
⊕
Av) =

∏
h(Av) =

∏
ev, by

Corollary 23.42, so h(A) = e∞(L/K)/[L : K].

Lemma 24.9. Let L/K be a cyclic extension of global fields with Galois group 〈σ〉. We have
h0(IL) = 1 and h(IL) = h0(IL) = e0(L/K)[IK : N(IL)].

Proof. Let I ∈ IL and suppose N(I) = OK . For each prime q|p we have N(q) = pfp

(by Theorem 6.10), and N(
∏

q|p q
vq(I)) = pfp

∑
q|p vq(I) = OK , equivalently,

∑
q|p vq(I) = 0.

Order {q|p} as q1, . . . , qg so that qi+1 = σ(qi) and q1 = σ(qg). Let ni := vqi(I) and define
mi := −

∑
j≤i nj and Jp :=

∏
qmi
i so that

σ(Jp)/Jp = q
mg−m1

1 qm1−m2
2 · · · qmg−1−mg

g = qn1
1 · · · q

ng
g =

∏
q|p

qvq(I).

It follows that I = σ(J)/J where J :=
∏

p Jp, thus IL[NG] = (σ − 1)(IL) and h0(IL) = 1.
We have I ∈ IGL ⇔ vσ(q)(I) = vq(I) for all primes q ∈ IL. If we put p := q ∩ OK , then

I ∈ IGL if and only if vq(I) is constant on {q|p} for all primes p ∈ IK . It follows that IGL
consists of all products of ideals of the form (pOL)1/ep . Therefore [IGL : IK ] = e0(L/K) and
h(IL) = h0(IL) = [IGL : N(IL)] = e0(L/K)[IK : N(IL)] as claimed.
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Recall that for a modulus m of K and an extension of global fields L/K we use ImL to
denote the group of fractional ideals coprime to mOL.

Corollary 24.10. Let L/K be a cyclic extension of global fields and let m be a modulus
for K divisible by all the primes that ramify in L. Then h(ImL ) = [ImK : N(ImL )].

Proof. The proof of Lemma 24.9 still applies if we replace IL with ImL and IK with ImK .

Theorem 24.11 (Ambiguous class number formula). Let L/K be a cyclic extension
of number fields with Galois group G. The G-invariant subgroup of the G-module ClL has
cardinality

#ClGL =
e(L/K)#ClK
n(L/K) [L : K]

,

where n(L/K) := [O×K : N(L×) ∩ O×K ] ∈ Z≥1.

Proof. The ideal class group ClL is the quotient of IL by its subgroup PL of principal
fractional ideals. We thus have a short exact sequence of G-modules

1 −→ PL −→ IL −→ ClL −→ 1.

The corresponding long exact sequence in (standard) cohomology begins

1 −→ PGL −→ IGL −→ ClGL −→ H1(PL) −→ 1,

since H1(IL) ' Ĥ0(IL) is trivial, by Lemma 24.9. Therefore

#ClGL = [IGL : PGL ] h0(PL). (4)

Using the inclusions PK ⊆ PGL ⊆ IGL we can rewrite the first factor on the RHS as

[IGL : PGL ] =
[IGL : PK ]

[PGL : PK ]
=

[IGL : IK ][IK : PK ]

[PGL : PK ]
=
e0(L/K)#ClK

[PGL : PK ]
, (5)

where [IGL : IK ] = e0(L/K) follows from the proof of Lemma 24.9.
We now consider the short exact sequence

1 −→ O×L −→ L×
α7→(α)−→ PL −→ 1.

The corresponding long exact sequence in cohomology begins

1 −→ O×K −→ K× −→ PGL −→ H1(O×L ) −→ 1 −→ H1(PL) −→ H2(O×L ) −→ H2(L×), (6)

since H1(L×) ' Ĥ0(L
×) is trivial, by Lemma 24.9. We have K×/O×K ' PK , thus

[PGL : PK ] = h0(O×L ) =
h0(O×L )
h(O×L )

=
h0(O×L ) [L : K]

e∞(L/K)
,

by Theorem 24.8. Combining this identity with (4) and (5) yields

#ClGL =
e(L/K)#ClK

[L : K]
· h0(PL)
h0(O×L )

. (7)
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We can write the second factor on the RHS using the second part of the long exact sequence
in (6). Recall that H2(•) = Ĥ2(•) = Ĥ0(•), by Theorem 23.37, thus

H1(PL) ' ker
(
Ĥ0(O×L )→ Ĥ0(L×)

)
' ker

(
O×K/N(O×L )→ K×/N(L×)

)
,

so h0(PL) = [O×K ∩N(L×) : N(O×L )]. We have h0(O×L ) = [O×K : N(O×L )], thus

h0(O×L )
h0(PL)

= [O×K : N(L×) ∩ O×K ] = n(L/K),

and plugging this into (7) yields the desired formula.

Remark 24.12. If L/K is a quadratic extension then ClGL = ClK [2]. To see this, note
that if Gal(L/K) = 〈σ〉 has order 2 then Iσ(I) = N(I) ∈ PK for all I ∈ IK , thus [I]−1 =
[σ(I)] = σ([I]) in ClK , and we have σ([I]) = [I]−1 = [I] if and only if [I] ∈ ClK [2]. This
fact can be used to prove quadratic reciprocity [3, §9].

Remark 24.13. When K = Q and L is an imaginary quadratic field of discriminant D, the
ambiguous class number formula implies that the rank of the 2-Sylow subgroup of the class
group of L is one less than the number of prime divisors of D: we have #ClGL = e0(L/K)/2,
since #ClQ = 1 and e∞(L/K) = [L :K] = n(L/K) = 2.

24.2 Norm index equality for unramified extensions

We first record an elementary lemma.

Lemma 24.14. Let f : A → C be a homomorphism of abelian groups and let B be a
subgroup of A containing the kernel of f . Then A/B ' f(A)/f(B).

Proof. Apply the snake lemma to the commutative diagram and consider the cokernels.

ker f B f(B) 0

0 ker f A f(A) 0.

←↩ →

⇐⇐

←→f

←
↩

→

←→
←
↩→

←→ ←↩ → ←→f ←→

In the following theorem it is crucial that the extension L/K is completely unramified,
including at all infinite places of K; to emphasize this, let us say that an extension of number
fields L/K is totally unramified if e(L/K) = 1.

Theorem 24.15. Let L/K be a totally unramified cyclic extension of number fields. Then

[IK : N(IL)PK ] ≥ [L : K].

Proof. We have

[IK : N(IL)PK ] =
[IK : PK ]

[N(IL)PK : PK ]
=

#ClK
[N(IL)PK : PK ]

.
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The denominator on the RHS can be rewritten as

[N(IL)PK : PK ] = [N(IL) : N(IL) ∩ PK ] (2nd isomorphism theorem)

= [IL : N−1(PK)] (Lemma 24.14)

= [IL/PL : N−1(PK)/PL] (3rd isomorphism theorem)
= [ClL : ClL[NG]]

= #NG(ClL).

Now h0(ClL) = [ClGL : NG(ClL)], and applying Theorem 24.11 yields

[IK : N(IL)PK ] =
#ClK · h0(ClL)

#ClGL
=
h0(ClL)n(L/K)[L : K]

e(L/K)
≥ [L : K], (8)

since e(L/K) = 1, and h0(ClL), n(L/K) ≥ 1.

The norm index inequality Theorem 22.29 implies that for totally unramified cyclic
extensions of number fields L/K we have the equality

[IK : N(IL)PK ] = [L : K],

so we must have n(L/K) = [O×K : N(L×)∩O×K ] = 1 and h0(ClL) = 1, since (8) is an equality
with e(L/K) = 1.

Corollary 24.16. Let L/K be a totally unramified cyclic extension of number fields. Then
#ClGL = #ClK/[L : K] and the Tate cohomology groups of ClL are all trivial.

Proof. We have n(L/K) = h0(ClL) = e(L/K) = 1, so #ClGL = #ClK/[L : K] by Theo-
rem 24.11. We also have h(ClL) = h0(ClL)/h0(ClL) = 1, since ClL is finite, by Lemma 23.43,
so h0(ClL) = 1. Thus Ĥ0(ClL) and Ĥ0(ClL) are both trivial, and this implies that all the
Tate cohomology groups are trivial, by Theorem 23.37.

Corollary 24.17. Let L/K be a totally unramified cyclic extension of number fields. Then
every unit in O×K is the norm of an element of L.

Proof. We have n(L/K) = [O×K : N(L×) ∩ O×K ] = 1, so O×K = N(L×) ∩ O×K .
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