24 Artin reciprocity in the unramified case

Let L / K be an abelian extension of number fields. In Lecture 22 we defined the norm group $T_{L / K}^{\mathfrak{m}}:=N_{L / K}\left(\mathcal{I}_{L}^{\mathfrak{m}}\right) \mathcal{R}_{K}^{\mathfrak{m}}$ (see Definition 22.27) that we claim is equal to the kernel of the Artin map $\psi_{L / K}^{\mathfrak{m}}: \mathcal{I}_{K}^{\mathfrak{m}} \rightarrow \operatorname{Gal}(L / K)$, provided that the modulus \mathfrak{m} is divisible by the conductor of L (see Definition 22.24). In Theorem 22.29 we proved the inequality

$$
\begin{equation*}
\left[\mathcal{I}_{K}^{\mathfrak{m}}: T_{L / K}^{\mathfrak{m}}\right] \leq[L: K]=\left[\mathcal{I}_{K}^{\mathfrak{m}}: \operatorname{ker} \psi_{L / K}^{\mathfrak{m}}\right] \tag{1}
\end{equation*}
$$

(the equality follows from the surjectivity of the Artin map proved in Theorem 21.19). We now want to prove the reverse inequality

$$
\begin{equation*}
\left[\mathcal{I}_{K}^{\mathfrak{m}}: T_{L / K}^{\mathfrak{m}}\right] \geq[L: K] \tag{2}
\end{equation*}
$$

Which will show that the subgroups $T_{L / K}^{\mathfrak{m}}$ and $\operatorname{ker} \psi_{L / K}^{\mathfrak{m}}$ have the same index in $\mathcal{I}_{K}^{\mathfrak{m}}$. One can then apply an argument due to Artin (see [2, V.5.6]) to show that these equal index subgroups are in fact equal, yielding isomorphisms

$$
\begin{equation*}
\mathcal{I}_{K}^{\mathfrak{m}} / T_{L / K}^{\mathfrak{m}} \xrightarrow{\sim} \mathcal{I}^{\mathfrak{m}} / \operatorname{ker}_{L / K}^{\mathfrak{m}} \xrightarrow{\sim} \operatorname{Gal}(L / K) \tag{3}
\end{equation*}
$$

This result is known as the Artin reciprocity law. Note that $T_{L / K}^{m}$ contains $\mathcal{R}_{K}^{\mathfrak{m}}$, so $\mathcal{I}_{K}^{\mathfrak{m}} / T_{L / K}^{\mathfrak{m}}$ is a quotient of the ray class group $\mathrm{Cl}_{K}^{\mathfrak{m}}:=\mathcal{I}_{K}^{\mathfrak{m}} / \mathcal{R}_{K}^{\mathfrak{m}}$, thus the Artin reciprocity law implies that for every finite abelian extension L / K, the Galois group $\operatorname{Gal}(L / K)$ is isomorphic to a quotient of $\mathrm{Cl}_{K}^{\mathfrak{m}}$, for any modulus \mathfrak{m} divisible by the conductor of L. Moreover, it tells us exactly which quotient: the one induced by the image of the norm map $\mathcal{I}_{L}^{\mathfrak{m}} \rightarrow \mathcal{I}_{K}^{\mathfrak{m}}$

In this lecture we will prove (2) for cyclic extensions L / K when the modulus \mathfrak{m} is trivial (which forces L / K to be unramified).

24.1 Some cohomological calculations

If L / K is a finite Galois extension of global fields with Galois group G, then we can naturally view any of the abelian groups $L, L^{\times}, \mathcal{O}_{L}, \mathcal{O}_{L}^{\times}, \mathcal{I}_{L}, \mathcal{P}_{L}$ as G-modules.

When $G=\langle\sigma\rangle$ is cyclic we can compute the Tate cohomology groups of any of these G-modules A, and their associated Herbrand quotients $h(A)$. The Herbrand quotient is defined as the ratio of the cardinalities of

$$
\begin{aligned}
& \hat{H}^{0}(A):=\hat{H}^{0}(G, A) \\
& \hat{H}_{0}(A):=\operatorname{coker} \hat{N}_{G}=A^{G} / \operatorname{im} \hat{N}_{G}=\frac{A[\sigma-1]}{N_{G}(A)} \\
&
\end{aligned}
$$

if both are finite. We can also compute $\hat{H}_{0}(A)=\hat{H}^{-1}(A) \simeq \hat{H}^{1}(A)=H^{1}(A)$ as 1-cocycles modulo 1-coboundaries whenever it is convenient to do so. In the interest of simplifying the notation we omit G from our notation whenever it is clear from context.

For the multiplicative groups $\mathcal{O}_{L}^{\times}, L^{\times}, \mathcal{I}_{L}, \mathcal{P}_{L}$, the norm element $N_{G}:=\sum_{i=1}^{n} \sigma^{i}$ corresponds to the action of the field norm $\mathrm{N}_{L / K}$ and ideal norm $N_{L / K}$ that we have previously defined, provided that we identify the codomain of the norm map with a subgroup of its domain. For the groups L^{\times}and \mathcal{O}_{L}^{\times}this simply means identifying K^{\times}and \mathcal{O}_{K}^{\times}as subgroups via inclusion. For the ideal group \mathcal{I}_{K} we have a natural extension map $\mathcal{I}_{K} \hookrightarrow \mathcal{I}_{L}$ defined by
$I \mapsto I \mathcal{O}_{L}$ that restricts to a map $\mathcal{P}_{K} \hookrightarrow \mathcal{P}_{L} \cdot{ }^{1}$ Under this convention taking the norm of an element of \mathcal{I}_{L} that is (the extension of) an element of \mathcal{I}_{K} corresponds to the map $I \mapsto I^{\# G}$, as it should, and \mathcal{I}_{K} is a subgroup of the G-invariants \mathcal{I}_{L}^{G}. ${ }^{2}$

When A is multiplicative, the action of $\sigma-1$ on $a \in A$ is $(\sigma-1)(a)=\sigma(a) / a$, but we will continue to use the notation $(\sigma-1)(A)$ and $A[\sigma-1]$ to denote the image and kernel of this action. Conversely, when A is additive, the action of N_{G} corresponds to the trace map, not the norm map. In order to lighten the notation, in this lecture we use N to denote both the (relative) field norm $\mathrm{N}_{L / K}$ and the ideal norm $N_{L / K}$.
Theorem 24.1. Let L / K be a cyclic Galois extension with Galois group $G:=\operatorname{Gal}(L / K)$.
(i) $\hat{H}^{0}(L)$ and $\hat{H}_{0}(L)$ are both trivial.
(ii) $\hat{H}^{0}\left(L^{\times}\right) \simeq K^{\times} / N\left(L^{\times}\right)$and $\hat{H}_{0}\left(L^{\times}\right)$is trivial.

Proof. (i) The trace map from L to K is not identically zero (by Theorem 5.20 , since L / K is separable), so it must be surjective, since it is a K-linear transformation whose codomain has dimension 1. Thus $N_{G}(L)=T(L)=K$ and $\hat{H}^{0}(L)=L^{G} / N_{G}(L)=K / K$ is trivial. By the normal basis theorem, we can fix $\gamma \in L$ so that $\left(\gamma, \sigma(\gamma), \ldots, \sigma^{n-1}(\gamma)\right)$ is a K-basis for $L \simeq K^{n}$ on which σ acts on vectors in K^{n} as a cyclic shift. For any $a \in K^{n}$ with trace zero, we may define $b \in K^{n}$ by $b_{i}=-\sum_{j \leq i} a_{j}$ so that $\sigma(b)-b=\left(b_{n}-b_{1}, b_{1}-b_{2}, \ldots, b_{n-1}-b_{n}\right)=a$. It follows that $L\left[N_{G}\right]=(\sigma-1)(L)$ and $\hat{H}_{0}(L)$ is trivial.
(ii) We have $\hat{H}^{0}\left(L^{\times}\right)=\left(L^{\times}\right)^{G} / N_{G}\left(L^{\times}\right)=K^{\times} / N\left(L^{\times}\right)$. The argument that $\hat{H}_{0}\left(L^{\times}\right)$is trivial is as in (i): given $a \in K^{n}$ with norm one we define $b \in K^{n}$ by $b_{i}:=\left(\prod_{j \leq i} a_{i}\right)^{-1}$ so that $\sigma(b) / b=a$. It follows that $L^{\times}\left[N_{G}\right]=(\sigma-1)\left(L^{\times}\right)$and $\hat{H}_{0}\left(L^{\times}\right)$is trivial.

Remark 24.2. If one replaces \hat{H}_{0} with H^{1} in Theorem 24.1 (note that $\hat{H}_{0}=H^{1}$ in the cyclic case by Theorem 23.37) the result holds for arbitrary Galois extensions, as shown by Noether [4], but the proof then involves showing that every 1-cocycle is a 1-coboundary.

Corollary 24.3 (Hilbert Theorem 90). Let L / K be a finite cyclic extension with Galois group $\operatorname{Gal}(L / K)=\langle\sigma\rangle$. Then $N(\alpha)=1$ if and only if $\alpha=\beta / \sigma(\beta)$ for some $\beta \in L^{\times}$.

Our next goal is to compute the Herbrand quotient of \mathcal{O}_{L}^{\times}(in the case that L / K is a finite cyclic extension of number fields). For this we will apply a variant of Dirichlet's unit theorem due to Herbrand, but first we need to discuss infinite places of number fields.

If L / K is a Galois extension of global fields, the Galois group $\operatorname{Gal}(L / K)$ acts on the set of places w of L via the action $w \mapsto \sigma(w)$, where $\sigma(w)$ is the equivalence class of the absolute value defined by $\|\alpha\|_{\sigma(w)}:=\|\sigma(\alpha)\|_{w}$. This action permutes the places w lying above a given place v of K; if v is a finite place corresponding to a prime \mathfrak{p} of K, this is just the usual action of the Galois group on the set $\{\mathfrak{q} \mid \mathfrak{p}\}$.

Definition 24.4. Let L / K be a Galois extension of global fields and let w be a place of L. The decomposition group of w is its stabilizer in $\operatorname{Gal}(L / K)$:

$$
D_{w}:=\{\sigma \in \operatorname{Gal}(L / K): \sigma(w)=w\} .
$$

If w corresponds to a prime \mathfrak{q} of \mathcal{O}_{L} then $D_{w}=D_{\mathfrak{q}}$ is also the decomposition group of \mathfrak{q}.

[^0]Now let L / K be a Galois extension of number fields. If we write $L \simeq \mathbb{Q}[x] /(f)$ then we have a one-to-one correspondence between embeddings of L into \mathbb{C} and roots of f in \mathbb{C}. Each embedding of L into \mathbb{C} restricts to an embedding of K into \mathbb{C}, and this induces a map that sends each infinite place w of L to the infinite place v of K that w extends. This map may send a complex place to a real place; this occurs when a pair of distinct complex conjugate embeddings of L restrict to the same embedding of K (which must be a real embedding). In this case we say that the place v (and w) is ramified in the extension L / K, and define the ramification index $e_{v}:=2$ when this holds (and put $e_{v}:=1$ otherwise). This notation is consistent with our notation $e_{v}:=e_{\mathfrak{p}}$ for finite places v corresponding to primes \mathfrak{p} of K. Let us also define $f_{v}:=1$ for $v \mid \infty$ and put $g_{v}:=\#\{w \mid v\}$ so that the following formula generalizing Corollary 7.5 holds for all places v of K :

$$
e_{v} f_{v} g_{v}=[L: K] .
$$

Definition 24.5. For a Galois extension of number fields L / K we define the integers

$$
e_{0}(L / K):=\prod_{v \nmid \infty} e_{v}, \quad e_{\infty}(L / K):=\prod_{v \mid \infty} e_{v}, \quad e(L / K):=e_{0}(L / K) e_{\infty}(L / K) .
$$

Let us now write $L \simeq K[x] /(g)$. Each embedding of K into \mathbb{C} gives rise to $[L: K]$ distinct embeddings of L into \mathbb{C} that extend it, one for each root of g (use the embedding of K to view g as a polynomial in $\mathbb{C}[x]$, then pick a root of g in \mathbb{C}). The transitive action of $\operatorname{Gal}(L / K)$ on the roots of g induces a transitive action on these embeddings and their corresponding places. Thus for each infinite place v of K the Galois group acts transitively on $\{w \mid v\}$, and either every place w above v is ramified (this can occur only when v is real and $[L: K]$ is divisible by 2), or none are. It follows that each unramified place v of K has $[L: K]$ places w lying above it, each with trivial decomposition group D_{w}, while each ramified (real) place v of K has $[L: K] / 2$ (complex) places w lying above it, each with decomposition group D_{w} of order 2 (its non-trivial element corresponds to complex conjugation in the corresponding embeddings), and the D_{w} are all conjugate.

Theorem 24.6 (Herbrand unit theorem). Let L / K be a Galois extension of number fields. Let $w_{1}, \ldots w_{r+s}$ be the archimedean places of L, where r and s are the number of real and complex places of L, respectively. There exist units $\varepsilon_{1}, \ldots, \varepsilon_{r+s} \in \mathcal{O}_{L}^{\times}$such that
(i) $\sigma\left(\varepsilon_{i}\right)=\varepsilon_{j}$ if and only if $\sigma\left(w_{i}\right)=w_{j}$, for all $\sigma \in \operatorname{Gal}(L / K)$;
(ii) The set $\left\{\varepsilon_{1}, \ldots, \varepsilon_{r+s}\right\}$ generates a finite index subgroup of \mathcal{O}_{L}^{\times};
(iii) $\prod_{i} \varepsilon_{i}=1$, and every relation among the ε_{i} is a multiple of this one.

Proof. The theorem holds with $\varepsilon=1$ if $r+s=1$ so assume $r+s>1$. Pick $u_{1}, \ldots, u_{r+s} \in \mathcal{O}_{L}^{\times}$ such that $\left\|u_{i}\right\|_{w_{j}}<1$ for $i \neq j$ and $\left\|u_{i}\right\|_{w_{i}}>1$. Such u_{i} may be constructed as in the proof of Dirichlet's unit theorem: fix $B>\left(\frac{2}{\pi}\right)^{s} \sqrt{\left|D_{L}\right|}$, fix generators γ_{k} for the principal \mathcal{O}_{L} ideals of absolute norm at most B, let $M=(r+s) \max _{j \neq i, k}\left\|\gamma_{k}\right\|_{w_{j}}$, define an Arakelov divisor c of size B with $c_{v}=1$ for $v \nmid \infty$ and $c_{w_{j}}=1 / M$ for $j \neq i$, use Proposition 15.9 to obtain $a_{i} \in \mathcal{O}_{L}$ with $\left\|a_{i}\right\|_{w_{j}} \leq 1 / M$ for $j \neq i$ and $N\left(a_{i}\right) \leq B$, and take $u_{i}=a_{i} / \gamma \in \mathcal{O}_{L}^{\times}$, where γ is our chosen generator for $\left(a_{i}\right)$.

Now let $\alpha_{i}:=\prod_{\sigma \in D_{w_{i}}} \sigma\left(u_{i}\right) \in \mathcal{O}_{L}^{\times}$. We have

$$
\left\|\alpha_{i}\right\|_{w_{i}}=\prod_{\sigma \in D_{w_{i}}}\left\|\sigma\left(u_{i}\right)\right\|_{w_{i}}=\prod_{\sigma \in D_{w_{i}}}\left\|u_{i}\right\|_{\sigma\left(w_{i}\right)}=\prod_{\sigma \in D_{w_{i}}}\left\|u_{i}\right\|_{w_{i}}>1,
$$

and for $j \neq i$ we have

$$
\left\|\alpha_{i}\right\|_{w_{j}}=\prod_{\sigma \in D_{w_{i}}}\left\|\sigma\left(u_{i}\right)\right\|_{w_{j}}=\prod_{\sigma \in D_{w_{i}}}\left\|u_{i}\right\|_{\sigma\left(w_{j}\right)}<1
$$

since $\sigma \in D_{w_{i}}$ fixes w_{i} and permutes the w_{j} with $j \neq i$; note that α_{i} is fixed by $\sigma \in D_{w_{i}}$.
The Galois group $G:=\operatorname{Gal}(L / K)$ partitions the w_{i} into m orbits, where m is the number of archimedean place of v. Let us index the w_{i} and α_{i} so that w_{1}, \ldots, w_{m} lie in distinct orbits. We then have $w_{j}=\sigma_{j}\left(w_{i(j)}\right)$ for a unique $i(j) \leq m$, with σ_{j} in a unique coset of $D_{w_{i(j)}}$; let us fix a choice of $\sigma_{j} \in \sigma_{j} D_{w_{i(j)}}$. We now define $\beta_{j}:=\sigma_{j}\left(\alpha_{i(j)}\right)$; the value of β_{j} does not depend on our choice of σ_{j} because α_{i} is fixed by $D_{w_{i}}$. The β_{j} satisfy (i), and Lemma 24.7 below implies that they also satisfy (ii), since they are a permutation of the α_{i}.

We must have $\prod_{i} \beta_{i}^{n_{i}}=1$ for some tuple $\left(n_{1}, \ldots, n_{r+s}\right) \in \mathbb{Z}^{r+s}$, since \mathcal{O}_{L}^{\times}has rank $r+s-1$. The set of all such tuples spans a rank-1 submodule of \mathbb{Z}^{r+s} from which we may choose a generator $\left(n_{1}, \ldots, n_{r+s}\right)$. If now put $\varepsilon_{i}:=\beta_{i}^{n_{i}}$ then the ε_{i} satisfy (iii). The ε_{i} also satisfy (ii), since the ε_{i} generate a finite index subgroup of the group generated by the β_{i}. We must have $n_{i}=n_{j}$ whenever w_{i} and w_{j} lie in the same Galois orbit (otherwise applying some $\sigma \in G$ to $\prod_{i} \beta_{i}^{n_{i}}=1$ would yield a relation that is not a multiple of the one we have). It follows that the ε_{i} satify (i), since the β_{i} do.

Lemma 24.7. Let K be a number field with archimedean places v_{1}, \ldots, v_{r+s}. Any units $u_{1}, \ldots u_{r+s} \in \mathcal{O}_{L}^{\times}$that satisfy $\left\|u_{i}\right\|_{v_{j}}<1$ for $j \neq i$ generate a finite index subgroup of \mathcal{O}_{K}^{\times}.

Proof. Recall Log: $K_{\mathbb{R}}^{\times} \rightarrow \mathbb{R}^{r+s}$ given by $\left(\alpha_{v}\right) \mapsto\left(\log \left\|\alpha_{v}\right\|_{v}\right)$ from the proof of Dirichlet's Unit Theorem (see Proposition 15.11). The restriction to $\mathcal{O}_{K}^{\times} \subseteq K^{\times} \hookrightarrow K_{\mathbb{R}}$ has finite kernel, so it suffices to to show $\log \left(\left\{u_{i}\right\}\right)$ generates a finite index subgroup of $\log \left(\mathcal{O}_{K}^{\times}\right) \simeq \mathbb{Z}^{r+s-1}$.

Let $e_{i}=\left(e_{i 1}, e_{i 2}, \ldots, e_{i(r+s)}\right)=\log \left(u_{i}\right)$. It suffices to show that e_{1}, \ldots, e_{r+s-1} are \mathbb{R} linearly independent; they then span a free \mathbb{Z}-module of $\operatorname{rank} r+s-1$ in $\log \left(\mathcal{O}_{K}^{\times}\right) \simeq \mathbb{Z}^{r+s-1}$, which must have finite index. Consider the $(r+s-1) \times(r+s-1)$ matrix $M=\left(e_{i j}\right)$. It has positive diagonal entries, negative nondiagonal entries, and positive row sums ($\sum_{j=1}^{r+s} e_{i j}=0$ and $e_{i(r+s)}<0$ imply $\left.\sum_{j=1}^{r+s-1} e_{i j}>0\right)$. Suppose that $M x=0$ has a nonzero solution with $x_{1} \geq \max _{j}\left|x_{j}\right|>0$ (such a solution can be obtained from any nonzero solution by re-indexing columns and negating x if needed). We have

$$
\sum_{j} m_{1 j} x_{j}=m_{11} x_{1}-\sum_{j>1}\left|m_{1 j}\right| x_{j} \geq m_{11} x_{1}-\sum_{j>1}\left|m_{1 j}\right| x_{1}=x_{1} \sum_{j} m_{1 j}>0,
$$

since $\sum_{j} m_{1 j}>0$, but this contradicts $M x=0$.
Theorem 24.8. Let L / K be an extension of number fields with cyclic Galois group $G=\langle\sigma\rangle$. The Herbrand quotient of the G-module \mathcal{O}_{L}^{\times}is

$$
h\left(\mathcal{O}_{L}^{\times}\right)=\frac{e_{\infty}(L / K)}{[L: K]}
$$

Proof. Let $\varepsilon_{1}, \ldots, \varepsilon_{r+s} \in \mathcal{O}_{L}^{\times}$be as in Theorem 24.6, and let A be the subgroup of \mathcal{O}_{L}^{\times}they generate, viewed as a G-module. By Corollary 23.48, $h(A)=h\left(\mathcal{O}_{L}^{\times}\right)$if either is defined, since A has finite index in \mathcal{O}_{L}^{\times}, so we will compute $h(A)$.

For each field embedding $\phi: K \hookrightarrow \mathbb{C}$, let E_{ϕ} be the free \mathbb{Z}-module with basis $\{\varphi \mid \phi\}$ consisting of the $n:=[L: K]$ embeddings $\varphi: L \hookrightarrow \mathbb{C}$ with $\varphi_{\left.\right|_{K}}=\phi$, equipped with the
G-action given by $\sigma(\varphi):=\varphi \circ \sigma$. Let v be the infinite place of K corresponding to ϕ, and let A_{v} be the free \mathbb{Z}-module with basis $\{w \mid v\}$ consisting of places of L that extend v, equipped with the G-action given by the action of G on $\{w \mid v\}$. Let $\pi: E_{\phi} \rightarrow A_{v}$ be the G-module morphism sending each embedding $\varphi \mid \phi$ to the corresponding place $w \mid v$. Let $m:=\#\{w \mid v\}$ and define $\tau:=\sigma^{m}$; then τ is either trivial or has order 2 , and in either case generates the decomposition group D_{w} for all $w \mid v$ (since G is abelian). We have an exact sequence

$$
0 \rightarrow \operatorname{ker} \pi \longrightarrow E_{\phi} \xrightarrow{\pi} A_{v} \rightarrow 0,
$$

with $\operatorname{ker} \pi=(\tau-1) E_{\phi}$. If v is unramified then $\operatorname{ker} \pi=0$ and $h\left(A_{v}\right)=h\left(E_{\phi}\right)=1$, since $E_{\phi} \simeq \mathbb{Z}[G] \simeq \operatorname{Ind}^{G}(\mathbb{Z})$, by Lemma 23.43. Otherwise, order $\{w \mid v\}=\left\{w_{0}, \ldots, w_{m-1}\right\}$ and $\{\varphi \mid \phi\}=\left\{\varphi_{0}, \ldots, \varphi_{n-1}\right\}$ so that $w_{i}=\left\{\varphi_{i}, \varphi_{m+i}\right\}$. We then have

$$
\operatorname{ker} \pi=(\tau-1) E_{\phi}=\left\{\sum_{0 \leq i<m} a_{i}\left(\varphi_{i}-\varphi_{m+i}\right): a_{i} \in \mathbb{Z}\right\},
$$

which is annihilated by N_{G}, and $\operatorname{ker} \pi[\sigma-1]=(\operatorname{ker} \pi)^{G}=0$, since $\tau=\sigma^{m}$ acts as -1 , so $h^{0}(\operatorname{ker} \pi)=1$. Now $(\sigma-1)(\operatorname{ker} \pi)=\left\{\sum a_{i}\left(\varphi_{i}-\varphi_{m+i}\right): a_{i} \in \mathbb{Z}\right.$ with $\left.\sum a_{i} \equiv 0 \bmod 2\right\}$ has index 2 in $\operatorname{ker} \pi\left[N_{G}\right]=\operatorname{ker} \pi$, so $h_{0}(\operatorname{ker} \pi)=2$ and $h(\operatorname{ker} \pi)=1 / 2$. Corollary 23.41 implies $h\left(A_{v}\right)=h\left(E_{\phi}\right) / h(\operatorname{ker} \pi)=2$, and in every case we have $h\left(A_{v}\right)=e_{v}$, where $e_{v} \in\{1,2\}$ is the ramification index of v.

Now consider the exact sequence of G-modules

$$
0 \longrightarrow \mathbb{Z} \longrightarrow \bigoplus_{v \mid \infty} A_{v} \xrightarrow{\psi} A \longrightarrow 1
$$

where ψ sends each infinite place w_{1}, \ldots, w_{r+s} of L to the corresponding $\varepsilon_{1}, \ldots, \varepsilon_{r+s} \in A$ given by Theorem 24.6. The kernel of ψ is the trivial G-module $\left(\sum_{i} w_{i}\right) \mathbb{Z} \simeq \mathbb{Z}$, since we have $\psi\left(\sum_{i} w_{i}\right)=\prod_{i} \varepsilon_{i}=1$ and no other relations among the ε_{i}, by Theorem 24.6. We have $h(\mathbb{Z})=\# G=[L: K]$, by Corollary 23.46, and $h\left(\bigoplus A_{v}\right)=\prod h\left(A_{v}\right)=\prod e_{v}$, by Corollary 23.42 , so $h(A)=e_{\infty}(L / K) /[L: K]$.

Lemma 24.9. Let L / K be a cyclic extension of global fields with Galois group $\langle\sigma\rangle$. We have $h_{0}\left(\mathcal{I}_{L}\right)=1$ and $h\left(\mathcal{I}_{L}\right)=h^{0}\left(\mathcal{I}_{L}\right)=e_{0}(L / K)\left[\mathcal{I}_{K}: N\left(\mathcal{I}_{L}\right)\right]$.

Proof. Let $I \in \mathcal{I}_{L}$ and suppose $N(I)=O_{K}$. For each prime $\mathfrak{q} \mid \mathfrak{p}$ we have $N(\mathfrak{q})=\mathfrak{p}^{f_{\mathfrak{p}}}$ (by Theorem 6.10), and $N\left(\prod_{\mathfrak{q} \mid \mathfrak{p}} \mathfrak{q}^{v_{\mathfrak{q}}(I)}\right)=\mathfrak{p}^{f_{\mathfrak{p}} \sum_{\mathfrak{q} \mid \mathfrak{p}} v_{\mathfrak{q}}(I)}=\mathcal{O}_{K}$, equivalently, $\sum_{\mathfrak{q} \mid \mathfrak{p}} v_{\mathfrak{q}}(I)=0$. Order $\{\mathfrak{q} \mid \mathfrak{p}\}$ as $\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{g}$ so that $\mathfrak{q}_{i+1}=\sigma\left(\mathfrak{q}_{i}\right)$ and $\mathfrak{q}_{1}=\sigma\left(\mathfrak{q}_{g}\right)$. Let $n_{i}:=v_{\mathfrak{q}_{i}}(I)$ and define $m_{i}:=-\sum_{j \leq i} n_{j}$ and $J_{\mathfrak{p}}:=\prod \mathfrak{q}_{i}^{m_{i}}$ so that

$$
\sigma\left(J_{\mathfrak{p}}\right) / J_{\mathfrak{p}}=\mathfrak{q}_{1}^{m_{g}-m_{1}} \mathfrak{q}_{2}^{m_{1}-m_{2}} \cdots \mathfrak{q}_{g}^{m_{g-1}-m_{g}}=\mathfrak{q}_{1}^{n_{1}} \cdots \mathfrak{q}_{g}^{n_{g}}=\prod_{\mathfrak{q} \mid \mathfrak{p}} \mathfrak{q}^{v_{\mathfrak{q}}(I)} .
$$

It follows that $I=\sigma(J) / J$ where $J:=\prod_{\mathfrak{p}} J_{\mathfrak{p}}$, thus $\mathcal{I}_{L}\left[N_{G}\right]=(\sigma-1)\left(\mathcal{I}_{L}\right)$ and $h_{0}\left(\mathcal{I}_{L}\right)=1$.
We have $I \in \mathcal{I}_{L}^{G} \Leftrightarrow v_{\sigma(\mathfrak{q})}(I)=v_{\mathfrak{q}}(I)$ for all primes $\mathfrak{q} \in \mathcal{I}_{L}$. If we put $\mathfrak{p}:=\mathfrak{q} \cap \mathcal{O}_{K}$, then $I \in \mathcal{I}_{L}^{G}$ if and only if $v_{\mathfrak{q}}(I)$ is constant on $\{\mathfrak{q} \mid \mathfrak{p}\}$ for all primes $\mathfrak{p} \in \mathcal{I}_{K}$. It follows that \mathcal{I}_{L}^{G} consists of all products of ideals of the form $\left(\mathfrak{p} \mathcal{O}_{L}\right)^{1 / e_{\mathfrak{p}}}$. Therefore $\left[\mathcal{I}_{L}^{G}: \mathcal{I}_{K}\right]=e_{0}(L / K)$ and $h\left(\mathcal{I}_{L}\right)=h^{0}\left(\mathcal{I}_{L}\right)=\left[\mathcal{I}_{L}^{G}: N\left(\mathcal{I}_{L}\right)\right]=e_{0}(L / K)\left[\mathcal{I}_{K}: N\left(\mathcal{I}_{L}\right)\right]$ as claimed.

Recall that for a modulus \mathfrak{m} of K and an extension of global fields L / K we use $\mathcal{I}_{L}^{\mathfrak{m}}$ to denote the group of fractional ideals coprime to $\mathfrak{m} \mathcal{O}_{L}$.

Corollary 24.10. Let L / K be a cyclic extension of global fields and let \mathfrak{m} be a modulus for K divisible by all the primes that ramify in L. Then $h\left(\mathcal{I}_{L}^{\mathfrak{m}}\right)=\left[\mathcal{I}_{K}^{\mathfrak{m}}: N\left(\mathcal{I}_{L}^{\mathfrak{m}}\right)\right]$.

Proof. The proof of Lemma 24.9 still applies if we replace \mathcal{I}_{L} with $\mathcal{I}_{L}^{\mathfrak{m}}$ and \mathcal{I}_{K} with $\mathcal{I}_{K}^{\mathfrak{m}}$.
Theorem 24.11 (Ambiguous class number formula). Let L / K be a cyclic extension of number fields with Galois group G. The G-invariant subgroup of the G-module Cl_{L} has cardinality

$$
\# \mathrm{Cl}_{L}^{G}=\frac{e(L / K) \# \mathrm{Cl}_{K}}{n(L / K)[L: K]},
$$

where $n(L / K):=\left[\mathcal{O}_{K}^{\times}: N\left(L^{\times}\right) \cap \mathcal{O}_{K}^{\times}\right] \in \mathbb{Z}_{\geq 1}$.
Proof. The ideal class group Cl_{L} is the quotient of \mathcal{I}_{L} by its subgroup \mathcal{P}_{L} of principal fractional ideals. We thus have a short exact sequence of G-modules

$$
1 \longrightarrow \mathcal{P}_{L} \longrightarrow \mathcal{I}_{L} \longrightarrow \mathrm{Cl}_{L} \longrightarrow 1
$$

The corresponding long exact sequence in (standard) cohomology begins

$$
1 \longrightarrow \mathcal{P}_{L}^{G} \longrightarrow \mathcal{I}_{L}^{G} \longrightarrow \mathrm{Cl}_{L}^{G} \longrightarrow H^{1}\left(\mathcal{P}_{L}\right) \longrightarrow 1
$$

since $H^{1}\left(\mathcal{I}_{L}\right) \simeq \hat{H}_{0}\left(\mathcal{I}_{L}\right)$ is trivial, by Lemma 24.9. Therefore

$$
\begin{equation*}
\# \mathrm{Cl}_{L}^{G}=\left[\mathcal{I}_{L}^{G}: \mathcal{P}_{L}^{G}\right] h_{0}\left(\mathcal{P}_{L}\right) \tag{4}
\end{equation*}
$$

Using the inclusions $\mathcal{P}_{K} \subseteq \mathcal{P}_{L}^{G} \subseteq \mathcal{I}_{L}^{G}$ we can rewrite the first factor on the RHS as

$$
\begin{equation*}
\left[\mathcal{I}_{L}^{G}: \mathcal{P}_{L}^{G}\right]=\frac{\left[\mathcal{I}_{L}^{G}: \mathcal{P}_{K}\right]}{\left[\mathcal{P}_{L}^{G}: \mathcal{P}_{K}\right]}=\frac{\left[\mathcal{I}_{L}^{G}: \mathcal{I}_{K}\right]\left[\mathcal{I}_{K}: \mathcal{P}_{K}\right]}{\left[\mathcal{P}_{L}^{G}: \mathcal{P}_{K}\right]}=\frac{e_{0}(L / K) \# \mathrm{Cl}_{K}}{\left[\mathcal{P}_{L}^{G}: \mathcal{P}_{K}\right]}, \tag{5}
\end{equation*}
$$

where $\left[\mathcal{I}_{L}^{G}: \mathcal{I}_{K}\right]=e_{0}(L / K)$ follows from the proof of Lemma 24.9.
We now consider the short exact sequence

$$
1 \longrightarrow \mathcal{O}_{L}^{\times} \longrightarrow L^{\times} \xrightarrow{\alpha \mapsto(\alpha)} \mathcal{P}_{L} \longrightarrow 1
$$

The corresponding long exact sequence in cohomology begins

$$
\begin{equation*}
1 \longrightarrow \mathcal{O}_{K}^{\times} \longrightarrow K^{\times} \longrightarrow \mathcal{P}_{L}^{G} \longrightarrow H^{1}\left(\mathcal{O}_{L}^{\times}\right) \longrightarrow 1 \longrightarrow H^{1}\left(\mathcal{P}_{L}\right) \longrightarrow H^{2}\left(\mathcal{O}_{L}^{\times}\right) \longrightarrow H^{2}\left(L^{\times}\right) \tag{6}
\end{equation*}
$$

since $H^{1}\left(L^{\times}\right) \simeq \hat{H}_{0}\left(L^{\times}\right)$is trivial, by Lemma 24.9. We have $K^{\times} / \mathcal{O}_{K}^{\times} \simeq \mathcal{P}_{K}$, thus

$$
\left[\mathcal{P}_{L}^{G}: \mathcal{P}_{K}\right]=h_{0}\left(\mathcal{O}_{L}^{\times}\right)=\frac{h^{0}\left(\mathcal{O}_{L}^{\times}\right)}{h\left(\mathcal{O}_{L}^{\times}\right)}=\frac{h^{0}\left(\mathcal{O}_{L}^{\times}\right)[L: K]}{e_{\infty}(L / K)}
$$

by Theorem 24.8. Combining this identity with (4) and (5) yields

$$
\begin{equation*}
\# \mathrm{Cl}_{L}^{G}=\frac{e(L / K) \# \mathrm{Cl}_{K}}{[L: K]} \cdot \frac{h_{0}\left(\mathcal{P}_{L}\right)}{h^{0}\left(\mathcal{O}_{L}^{\times}\right)} \tag{7}
\end{equation*}
$$

We can write the second factor on the RHS using the second part of the long exact sequence in (6). Recall that $H^{2}(\bullet)=\hat{H}^{2}(\bullet)=\hat{H}^{0}(\bullet)$, by Theorem 23.37, thus

$$
H^{1}\left(\mathcal{P}_{L}\right) \simeq \operatorname{ker}\left(\hat{H}^{0}\left(\mathcal{O}_{L}^{\times}\right) \rightarrow \hat{H}^{0}\left(L^{\times}\right)\right) \simeq \operatorname{ker}\left(\mathcal{O}_{K}^{\times} / N\left(\mathcal{O}_{L}^{\times}\right) \rightarrow K^{\times} / N\left(L^{\times}\right)\right)
$$

so $h_{0}\left(\mathcal{P}_{L}\right)=\left[\mathcal{O}_{K}^{\times} \cap N\left(L^{\times}\right): N\left(\mathcal{O}_{L}^{\times}\right)\right]$. We have $h^{0}\left(\mathcal{O}_{L}^{\times}\right)=\left[\mathcal{O}_{K}^{\times}: N\left(\mathcal{O}_{L}^{\times}\right)\right]$, thus

$$
\frac{h^{0}\left(\mathcal{O}_{L}^{\times}\right)}{h_{0}\left(\mathcal{P}_{L}\right)}=\left[\mathcal{O}_{K}^{\times}: N\left(L^{\times}\right) \cap \mathcal{O}_{K}^{\times}\right]=n(L / K)
$$

and plugging this into (7) yields the desired formula.
Remark 24.12. If L / K is a quadratic extension then $\mathrm{Cl}_{L}^{G}=\mathrm{Cl}_{K}[2]$. To see this, note that if $\operatorname{Gal}(L / K)=\langle\sigma\rangle$ has order 2 then $I \sigma(I)=N(I) \in \mathcal{P}_{K}$ for all $I \in \mathcal{I}_{K}$, thus $[I]^{-1}=$ $[\sigma(I)]=\sigma([I])$ in Cl_{K}, and we have $\sigma([I])=[I]^{-1}=[I]$ if and only if $[I] \in \mathrm{Cl}_{K}[2]$. This fact can be used to prove quadratic reciprocity $[3, \S 9]$.

Remark 24.13. When $K=\mathbb{Q}$ and L is an imaginary quadratic field of discriminant D, the ambiguous class number formula implies that the rank of the 2-Sylow subgroup of the class group of L is one less than the number of prime divisors of D : we have $\# \mathrm{Cl}_{L}^{G}=e_{0}(L / K) / 2$, since $\# \mathrm{Cl}_{\mathbb{Q}}=1$ and $e_{\infty}(L / K)=[L: K]=n(L / K)=2$.

24.2 Norm index equality for unramified extensions

We first record an elementary lemma.
Lemma 24.14. Let $f: A \rightarrow C$ be a homomorphism of abelian groups and let B be a subgroup of A containing the kernel of f. Then $A / B \simeq f(A) / f(B)$.

Proof. Apply the snake lemma to the commutative diagram and consider the cokernels.

In the following theorem it is crucial that the extension L / K is completely unramified, including at all infinite places of K; to emphasize this, let us say that an extension of number fields L / K is totally unramified if $e(L / K)=1$.

Theorem 24.15. Let L / K be a totally unramified cyclic extension of number fields. Then

$$
\left[\mathcal{I}_{K}: N\left(\mathcal{I}_{L}\right) \mathcal{P}_{K}\right] \geq[L: K] .
$$

Proof. We have

$$
\left[\mathcal{I}_{K}: N\left(\mathcal{I}_{L}\right) \mathcal{P}_{K}\right]=\frac{\left[\mathcal{I}_{K}: \mathcal{P}_{K}\right]}{\left[N\left(\mathcal{I}_{L}\right) \mathcal{P}_{K}: \mathcal{P}_{K}\right]}=\frac{\# \mathrm{Cl}_{K}}{\left[N\left(\mathcal{I}_{L}\right) \mathcal{P}_{K}: \mathcal{P}_{K}\right]}
$$

The denominator on the RHS can be rewritten as

$$
\begin{aligned}
{\left[N\left(\mathcal{I}_{L}\right) \mathcal{P}_{K}: \mathcal{P}_{K}\right] } & =\left[N\left(\mathcal{I}_{L}\right): N\left(\mathcal{I}_{L}\right) \cap \mathcal{P}_{K}\right] & & \text { (2nd isomorphism theorem) } \\
& =\left[\mathcal{I}_{L}: N^{-1}\left(\mathcal{P}_{K}\right)\right] & & \text { (Lemma 24.14) } \\
& =\left[\mathcal{I}_{L} / \mathcal{P}_{L}: N^{-1}\left(\mathcal{P}_{K}\right) / \mathcal{P}_{L}\right] & & \text { (3rd isomorphism theorem) } \\
& =\left[\mathrm{Cl}_{L}: \mathrm{Cl}_{L}\left[N_{G}\right]\right] & & \\
& =\# N_{G}\left(\mathrm{Cl}_{L}\right) . & &
\end{aligned}
$$

Now $h^{0}\left(\mathrm{Cl}_{L}\right)=\left[\mathrm{Cl}_{L}^{G}: N_{G}\left(\mathrm{Cl}_{L}\right)\right]$, and applying Theorem 24.11 yields

$$
\begin{equation*}
\left[\mathcal{I}_{K}: N\left(\mathcal{I}_{L}\right) \mathcal{P}_{K}\right]=\frac{\# \mathrm{Cl}_{K} \cdot h^{0}\left(\mathrm{Cl}_{L}\right)}{\# \mathrm{Cl}_{L}^{G}}=\frac{h^{0}\left(\mathrm{Cl}_{L}\right) n(L / K)[L: K]}{e(L / K)} \geq[L: K] \tag{8}
\end{equation*}
$$

since $e(L / K)=1$, and $h^{0}\left(\mathrm{Cl}_{L}\right), n(L / K) \geq 1$.
The norm index inequality Theorem 22.29 implies that for totally unramified cyclic extensions of number fields L / K we have the equality

$$
\left[\mathcal{I}_{K}: N\left(\mathcal{I}_{L}\right) \mathcal{P}_{K}\right]=[L: K]
$$

so we must have $n(L / K)=\left[\mathcal{O}_{K}^{\times}: N\left(L^{\times}\right) \cap \mathcal{O}_{K}^{\times}\right]=1$ and $h^{0}\left(\mathrm{Cl}_{L}\right)=1$, since (8) is an equality with $e(L / K)=1$.

Corollary 24.16. Let L / K be a totally unramified cyclic extension of number fields. Then $\# \mathrm{Cl}_{L}^{G}=\# \mathrm{Cl}_{K} /[L: K]$ and the Tate cohomology groups of Cl_{L} are all trivial.

Proof. We have $n(L / K)=h^{0}\left(\mathrm{Cl}_{L}\right)=e(L / K)=1$, so $\# \mathrm{Cl}_{L}^{G}=\# \mathrm{Cl}_{K} /[L: K]$ by Theorem 24.11. We also have $h\left(\mathrm{Cl}_{L}\right)=h^{0}\left(\mathrm{Cl}_{L}\right) / h_{0}\left(\mathrm{Cl}_{L}\right)=1$, since Cl_{L} is finite, by Lemma 23.43, so $h_{0}\left(\mathrm{Cl}_{L}\right)=1$. Thus $\hat{H}^{0}\left(\mathrm{Cl}_{L}\right)$ and $\hat{H}_{0}\left(\mathrm{Cl}_{L}\right)$ are both trivial, and this implies that all the Tate cohomology groups are trivial, by Theorem 23.37.

Corollary 24.17. Let L / K be a totally unramified cyclic extension of number fields. Then every unit in \mathcal{O}_{K}^{\times}is the norm of an element of L.
Proof. We have $n(L / K)=\left[\mathcal{O}_{K}^{\times}: N\left(L^{\times}\right) \cap \mathcal{O}_{K}^{\times}\right]=1$, so $\mathcal{O}_{K}^{\times}=N\left(L^{\times}\right) \cap \mathcal{O}_{K}^{\times}$.

References

[1] D. Hilbert, Die Theorie der algebraischen Zahlkörper, Jahresbericht der Deutschen Mathematiker-Vereinigung 4 (1897), 175-546.
[2] Gerald J. Janusz, Algebraic number fields, 2nd ed., AMS, 1992.
[3] F. Lemmermeyer, Quadratic number fields, Springer, 2021.
[4] E. Noether, Der Hauptgeschlechtssatz für relativ-galoissche Zahlkörper, Math. Annalen 108 (1933), 411-419.

MIT OpenCourseWare
https://ocw.mit.edu

18.785 Number Theory I

Fall 2021

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ The induced map $\mathrm{Cl}_{K} \rightarrow \mathrm{Cl}_{L}$ need not be injective; extensions of non-principal ideals may be principal. Indeed, when L is the Hilbert class field every \mathcal{O}_{K}-ideal extends to a principal \mathcal{O}_{L}-ideal; this was conjectured by Hilbert and took over 30 years to prove. You will get a chance to prove it on Problem Set 10.
 ${ }^{2}$ Note that $\mathcal{I}_{L}^{G}=\mathcal{I}_{K}$ only when L / K is unramified; see Lemma 24.9 below.

