
18.785 Number Theory Fall 2021

Problem Set #2

Description

These problems are related to the material covered in Lectures 3–5. Your solutions should
be written up in latex (please do not submit handwritten solutions) and submitted as a
pdf-filebefore midnight on the date due.

Collaboration is permitted/encouraged, but you must identify your collaborators or
the name of your group on, as well any references you consulted that are not listed in
the course syllabus. If there are none write “Sources consulted: none” at the top of
your solution. Note that each student is expected to write their own solutions; it is fine
to discuss the problems with others, but your work must be your own.

The first person to spot each typo/error in any of the problem sets or lecture notes
will receive 1–5 points of extra credit, depending on the severity of the error

Instructions: Solve Problem 0 (at least take the time to convince yourself that you
know how to solve each part; come to office hours if you do not), then pick one of
Problems 1-2 and one of Problems 3-4 to solve. Finally, complete the survey, Problem 5.

Problem 0. Warmup (0 points)

These warmup exercises do not need to be written up. I urge you to at least think
through these problems (they should not take long).

(a) Let I, J,K be nonzero ideals in a noetherian (not necessarily Dedekind) domain.
Show that (I : J +K) = (I : J) ∩ (I : K).

(b) Let K be the field Fp(x, y) and consider the field L := K[t]/(tp
2

+ tpx+ y). Show
that L/K can be decomposed as a purely inseparable extension of a separable
extension, but not as a separable extension of a purely inseparable extension.

(c) Let K and L be two number fields. Describe the finite ètale K-algebra L ⊗Q K
when L ⊆ K, K ⊆ L, K = L, K ∩ L = Q, and then in general.

(d) Let K = Q(ζ5) be the number field generated by a primitive 5th root of unity ζ5.
Show that K⊗QR is isomorphic to R4 as an R-vector space but not as an R-algebra.

(e) Let p be a prime. Prove that there are exactly four (unital) commutative rings of
cardinality p2, two of which are finite ètale Fp-algebras. Of these four, which arise
as A/I for some discrete valuation ring A and ideal I?

Problem 1. Characterizing Dedekind domains (64 points)

Recall that we defined a Dedekind domain to be an integrally closed noetherian domain
of dimension at most one, or equivalently, a noetherian domain whose localizations at
nonzero prime ideals are discrete valuation rings (see Proposition 2.9); let (D) denote
either of these equivalent conditions. In Lecture 3 we proved that every Dedekind do-
main A enjoys the following properties:

(a) Each nonzero prime ideal of A is invertible.

1



(b) Each nonzero ideal of A is a (finite) product of prime ideals.

(c) A is noetherian and to contain is to divide: J ⊇ I ⇒ J |I for all ideals I, J .

(d) For each ideal I in A there exists a nonzero ideal J such that IJ is principal.

(e) The quotient A/I of A by any nonzero ideal I is a principal ideal ring.

(f) If a is a nonzero element of an ideal I then I = (a, b) for some b ∈ I.

In this problem you will prove that for any integral domain A, each of the conditions
above implies (D). As explained in Remark 2.15, for integral domains that are not neces-
sarily noetherian, one defined fractional ideals as A-submodules I of the fraction field A
for which there exists a nonzero r ∈ A such that rI ⊆ A (the definition of an invertible
ideal is exactly the same).

You may prove these implications any order (e.g. it suffices to just prove (a)⇒(b) in
your answer for part (a) so long as you eventually prove (b)⇒(D)). You may want to
first consider the case where A is a noetherian local domain.

(a) Prove (a)⇒(D).

(b) Prove (b)⇒(D).

(c) Prove (c)⇒(D).

(d) Prove (d)⇒(D).

(e) Prove (e)⇒(D).

(f) Prove (f)⇒(D).

(g) Show that the noetherian integral domain A = Z[
√
−3] of dimension one is not a

Dedekind domain in two ways: show that it is not integrally closed and exhibit
a nonzero prime ideal p for which Ap is not a DVR. Then give similarly explicit
demonstrations that A does not satisfy each of the properties (a)-(f) above.

Problem 2. Fermat’s last theorem (64 points)1

Recall that Fermat’s Last Theorem (FLT) states that

xn + yn = zn

has no integer solutions with xyz 6= 0 for n > 2. By removing common factors we may
assume gcd(x, y, z) = 1, and we may assume that n is a prime p ≥ 5, since the cases
n = 3 and n = 4 were proved by Euler and Fermat (respectively), and we can easily
reduce to the case where either n = p is prime or n = 4 (every solution with n = ab also
gives a solution with n = a and n = b).

So let p ≥ 5 be prime and suppose x, y, z are relatively prime integers for which

xp + yp = zp

with xyz 6= 0, and let ζp ∈ Q denote a primitive pth root of unity (so ζpp = 1 but ζp 6= 1).
In order to simplify matters, we will make two further assumptions:

1This problem is adapted from [1, I, Ex.17-27] but corrects/clarifies a number of minor issues there.
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(1) xyz 6= 0 mod p;

(2) the ring Z[ζp] is a UFD.

You will prove below that under these assumptions, no such x, y, z can exist.
The first assumption is not necessary, your proof can be extended to remove this

assumption. This was the basis of Lamé’s “proof” of FLT in 1847, which relied on (2);
unfortunately (2) holds only for p ≤ 19. Kummer later generalized Lamé’s argument to
many cases where Z[ζp] is not a UFD; Kummer’s argument applies whenever the order
of ideal class group of the ring of integers of Q(ζp) is not divisible by p, which is expected
to hold for infinitely many p (the set of so-called regular primes is believed to be infinite
but this is not known).

For the sake of concreteness, let us fix an embedding of Q(ζp) in C by defining
ζp := e2πi/p, and for any z ∈ Q(ζp) ⊆ C, let z̄ denote its complex conjugate. If S is a set,
then a ≡ b mod S means a− b ∈ S.

(a) Show that ζip − ζ
j
p properly divides p in the ring Z[ζp] for any i 6≡ j mod p.

(b) Show that if a non-unit α ∈ Z[ζp] divides x + yζip then it does not divide x + yζjp
for any j 6≡ i mod p.

(c) Show that x+ yζip = uiα
p
i for some αi ∈ Z[ζp] and ui ∈ Z[ζp]

×.

(d) Prove that 1 + t + · · · + tp−1 is irreducible in Q[t]; conclude that {1, ζp, . . . , ζp−2
p }

is a basis for Z[ζp] as a Z-module.

(e) Show that in any commutative ring A we have αp + βp ≡ (α+ β)p mod pA for all
α, β ∈ A.

(f) Let α ∈ Z[ζp]. Show (1) αp ≡ a mod pZ[ζp] for some a ∈ Z, (2) αp ≡ ᾱp mod pZ[ζp],
(3) p 6∈ Z[ζp]

×, and (4) if u ∈ Z[ζp]
× then u/ū 6= −ζip for any i.

(g) Show that if α ∈ Q× is an algebraic integer whose Galois conjugates all lie in the
unit disk in C then α is a root of unity.

(h) Show that if u ∈ Z[ζp]
× then u/ū = ζip for some i.

(i) Show that if x+yζp ≡ uαp mod pZ[ζp] with u ∈ Z[ζp]
×, then for some 0 ≤ j ≤ p−1

we must have x+ yζp ≡ (x+ yζ−1
p )ζjp mod pZ[ζp].

(j) Show that x+ yζp ≡ (x+ yζ−1
p )ζjp mod pZ[ζp] only if j ≡ 1 mod p.

(k) Show that if x+ yζp ≡ xζp + y mod pZ[ζp] then x ≡ y mod p.

(l) Assuming Z[ζp] is a UFD, show xp + yp = zp has no solutions with xyz 6≡ 0 mod p.

Problem 3. Factoring primes in quadratic fields (32 points)

This is a follow-up to Problem 3 on Problem Set 1. Let p, q ∈ Z denote primes.

(a) Let K be a quadratic extension of Q with ring of integers OK As we proved in
Lecture 5, OK is a Dedekind domain (as are all rings of integers). Let

(q) = qe11 · · · q
en
n
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be the unique factorization of the principal ideal (q) in OK . Show that

[OK : qOK ] = q2 =

n∏
i=1

[OK : qi]
ei ,

(where [B : A] denotes the index of A in B as an additive abelian group), and
conclude that there are three possibilities: (q) is prime, (q) = q1q2, or (q) = q2

1.

(b) For K := Q(
√
p) determine the unique factorization of (q) in OK explicitly; that

is, determine which of the three possibilities admitted by (a) occurs and when
applicable, write qi in the form (q, αi) for some explicitly described α ∈ OK . Be
sure to address the cases q = 2 and q = p which may require special treatment.

(c) Do the same for K := Q(
√
−p).

(d) For primes p, q 6= 2, let K := Q(
√
±p) and relate the factorization of (q) in OK

you determined in parts (b) and (c) to the factorization of x2 ∓ p in Fq[x].

Problem 4. Computing the norm and trace (32 points)

Let L/K be a finite extension of fields, let K be an algebraic closure of K containing L,
and define Σ := HomK(L,K).

(a) Prove that for all α ∈ L we have

NL/K(α) =

(∏
σ∈Σ

σ(α)

)[L:K]i

and TL/K(α) = [L : K]i

(∑
σ∈Σ

σ(α)

)
.

Fix α ∈ L× with minimal polynomial f(x) =
∑
aix

i over K, and let f(x) =
∏d
i=1(x−αi)

be the factorization of f in K[x]. Define n := [L : K] and e := [L : K(α)] (so de = n).

(b) Prove that

NL/K(α) =

d∏
i=1

αei = (−1)nae0 and TL/K(α) =
d∑
i=1

eαi = −ead−1.

(c) Prove that TL/K = 0 (as a linear map) if and only if L/K is inseparable.

Problem 5. Survey (4 points)

Complete the following survey by rating each problem you attempted on a scale of 1 to 10
according to how interesting you found it (1 = “mind-numbing,” 10 = “mind-blowing”),
and how difficult you found it (1 = “trivial,” 10 = “brutal”). Also estimate the amount
of time you spent on each problem to the nearest half hour.

Interest Difficulty Time Spent

Problem 1

Problem 2

Problem 3

Problem 4
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Please rate each of the following lectures that you attended, according to the quality of
the material (1=“useless”, 10=“fascinating”), the quality of the presentation (1=“epic
fail”, 10=“perfection”), the pace (1=“way too slow”, 10=“way too fast”, 5=“just right”)
and the novelty of the material to you (1=“old hat”, 10=“all new”).

Date Lecture Topic Material Presentation Pace Novelty

9/20 Étale algebras, norm and trace

9/22 Dedekind extensions

Please feel free to record any additional comments you have on the problem sets and the
lectures, in particular, ways in which they might be improved.
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