LECTURE 8

Tate Cohomology and Inverse Limits

Recall that, for an extension L/K of local fields with Galois group G := Z/nZ,
we were trying to show that #H(G, L*) = n. We claimed that x(L*) = n if and
only if x(OF) = 1, where x denotes the Herbrand quotient #H°/#H" and we recall
that a finite group has Herbrand quotient equal to 1 and that x is multiplicative
for short exact sequences.

Last time, we proved x(Opr) = 1, using the normal basis theorem to show
that L ~ K[G], that O, contains a finite-index open subgroup I' such that Of D
[ ~ Of via G-equivalence (so that I' is closed under the G-action), and that
Ok[G] ~T C Of. We then used Claim 7.10 to show that H(G,T) = 0 for each i,
hence x(Op) = x(T') = 1.

Now we'd like to give a better, i.e., more algebraic (without p-adic exponen-
tials!), proof that x(Of) = 1. So fix some open subgroup I' C Oy, isomorphic to
Ok|G] (as Ok[G]-modules).

CrAM 8.1. For sufficiently large N, 1+ pXT is a subgroup of OF, where px
is the maximal ideal of Ok .

ProOOF. For xz,y € I' C Oy, we have

(8.1) A+ mVz) (1 +7Ny) = 14+ 7V (@ +y) + 7N (),
—_—
epyr epN oy

where 7 is a uniformizer of p. Thus, if we choose N large enough that pX Oy C T,
which is possible because I' is an open subgroup of Op, this product will be in
1+ 7NT and therefore 1 + pXT will be a subgroup of oy O

CLAIM 8.2. The cohomologies of T' all vanish.

Choose N such that pXOp C pxT. Then the last term in (8.1) is in p2¥N Oy, C
P K'HF This suggests that we ought to filter 1 + pXT with additive subquotients,
that is, by 1 + pK“F so that
(L+px " T)/(1+ pr™T) = T/pxT = ki [G]

for all ¢ > 0 as additive groups by the above calculation, where ki denotes the
residue field of K. Moreover, these isomorphisms are Galois-equivariant, or G-
equivariant, as the G-action preserves all terms (' is preserved by assumption),
hence acts on both sides, and is preserved by the isomorphism. Thus, by Claim 7.10,

H(G, (14 pi 7T /(1 +pr 7)) = HY(G, ki [G]) = 0,
for each ¢ > 0 and j. As a corollary, for which we need the following lemma,
(8.2) HI(G, (1+pxD)/(1+px 1)) =0
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for all ¢ > 0 and j.
LEMMA 8.3. For any short exact sequence
0—-+M-—-E—-N-=0
of G-modules, H (G, M) = H (G, N) = 0 implies H(G, E) = 0 for each i.
PRrOOF. By (6.4), we have an exact sequence

HY(G, M) % H(G,E) S H(G,N),
0 0

hence H'(E) = Ker(8) = Im(a) = 0, as desired.
Now, we have an exact sequence

1+ pRHiT 14 phT 14 pAT
1+p%+i+11—w 1+p%+i+11" 1+p%+i1“

so (8.2) follows by induction on ¢ and Lemma 8.3.

0—
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It remains to show that H7(1+ pNT) = 0. In a perfect world, we would have

"j . I Aj
(G m M) = lim (G, M)

for any sequence of modules with a G-action and G-equivariant structure maps.

Thus would then imply
HI (14 pRT) = B (Lim(1+pRT)/(1 4 pE+'T))

>0

— lim (1 + pY'T)/(1 + D))
i>0

=1lim0

=0

by (8.2), as our filtration is complete. Thus, we need to find some way to justify

commuting Tate cohomologies and inverse limits.

LEMMA 8.4. Suppose we have a sequence of modules

(8.3)

with exact rows. Then we have an exact sequence

0— limM, 2 limE, % imN,,.
% 2 % n % n
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Moreover, if M,, — M, 1 is surjective for each m, then v is as well (otherwise, it
may not be!).

PRrOOF. Evidently, ¢ is injective, as if x € Ker(y), then each coordinate of
its image is 0, so by compatibility and injectivity of M, — FE, for each n, each
coordinate of x is 0, hence x = 0. Similarly, Ker(v) = Im(p) by exactness of each
row in (8.3).

To see (intuitively) how surjectivity of ¢ can fail, consider a compatible system
(zn) € @n N,,. We can lift each z,, to some y,, € E,, but it is unclear how to do
it compatibly, so that (y,) € @n E,.

Now assume that that each of the maps M,, — M, 11 is surjective. Let (z,) €
@n N,,, and suppose we have constructed y,, € F,, for some n. Choose any 1
Zpy1 via the map E,, 1 — Ny41, and let o, 41 be the image of §,1 in E,,. Then
Yn — Qn+1 € M, as it vanishes in N,,, and it lifts to 8,41 € M,,+1 by assumption.
If we now define y, 11 := Ynt1 + Bny1, then this maps to api1 + Yn — Cnt1 = Yn
in E, and to xp41 in Np41 as Bpy1 maps to 0 in NV,,41, hence by induction there
exists a compatible system (y,,) € @n E,, mapping to (x,) via ¢, as desired (note
that we may express this result as a surjection E, 1 — E, Xn, Nypi1, ie., to the
fibre product).. O

PRrROPOSITION 8.5. If
(8.4) oo Mgy — My, — -+ — My
is a sequence of G-modules, and H' (M, 1) — H*(M,) for all n and i, then
H' (lim M,,) = lim /*(M,)
for all 1.

PrOOF. We provide a proof for HO. Let M := I&Dn M, so that we are com-
paring HO(M) = MY /N(M) and Hm HO(M,) = lim ME /N(M,,). This amounts
to showing that the natural map

(tim M) /(im N(M,,)) = lim(MZ /N(M,,))

is an isomorphism. We have a commutative diagram

|

ni1) —— MG —— HYG, Myy1) — 0

. | |

) M¢ H°(G,M,) —— 0,

y

=

0 —— N(

0 —— N(

...<7 <;
S

and we claim that «,, is surjective for each n. Indeed, let € N(M,,), so that x =
N(y) for some y € M,,. Lifting y to an element z € M, 11, we have a,(N(z)) = z,
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as desired. Thus, by Lemma 8.4, we have

lim A°(M,) = (lim M)/(lim N(M,,)).

n

Now, we have

HC(lim M,,) = (lim M,,) /N(lim M,,) = M /N(M).

It is clear that (@n M,)% = lim M, since G acts on each of the coordinates of
lim M., so it remains to show that NQ&HT’ M,) = @nN(Mn) Letting K, :=

Ker(N: M,, — M,,) for each n, we have a commutative diagram

We'd like to show that S, is surjective. Recall that HY(G, M,) = K,/(1 —
0)M,,, and thus we have a commutative diagram

|

j

0 —— (1—0)Myyy — Knyy —— HY (G, My) —— 0

[

0 —— (1—-0)M,

Bn

s

Ky

HY (G, M,) — 0.

4 l

Now, 7, is surjective (the proof is similar to that for «,), and d,, is surjective by
hypothesis. Thus, 3, is surjective by the Snake Lemma, and so Lemma 8.4 implies

It follows that HO(@R M,) = lim HO(M,,), as desired. O

COROLLARY 8.6. For a sequence (8.4), if H'(M,) = 0 for all n and i, then
Ii”@inn M,) = 0. In particular, H'(1 + pXT) = 0, where we have set M; :=
(L+pRT) /(1 + pXTT) for each i.

It follows that, since 1 +pX¥T C O is a (additive, with a normal basis) finite-
index subgroup, we have x(O)) = x(1+p¥) = 1, which establishes (2) of Claim 7.8.
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