
LECTURE 8

Tate Cohomology and Inverse Limits

Recall that, for an extension L/K of local fields with Galois group G := Z/nZ,
we were trying to show that #Ĥ0(G,L×) = n. We claimed that χ(L×) = n if and
only if χ(O×L ) = 1, where χ denotes the Herbrand quotient #Ĥ0/#Ĥ1 and we recall
that a finite group has Herbrand quotient equal to 1 and that χ is multiplicative
for short exact sequences.

Last time, we proved χ(OL) = 1, using the normal basis theorem to show
that L ' K[G], that OL contains a finite-index open subgroup Γ such that O×L ⊃
Γ ' O+

L via G-equivalence (so that Γ is closed under the G-action), and that
OK [G] ' Γ ⊆ OL. We then used Claim 7.10 to show that Ĥi(G,Γ) = 0 for each i,
hence χ(OL) = χ(Γ) = 1.

Now we’d like to give a better, i.e., more algebraic (without p-adic exponen-
tials!), proof that χ(O×L ) = 1. So fix some open subgroup Γ ⊆ OL isomorphic to
OK [G] (as OK [G]-modules).

Claim 8.1. For sufficiently large N , 1 + pNKΓ is a subgroup of O×L , where pK
is the maximal ideal of OK .

Proof. For x, y ∈ Γ ⊆ OL, we have

(8.1) (1 + πNx)(1 + πNy) = 1 + πN (x+ y)︸ ︷︷ ︸
∈pNKΓ

+π2N (xy)︸ ︷︷ ︸
∈p2N

K OL

,

where π is a uniformizer of pK . Thus, if we choose N large enough that pNKOL ⊆ Γ,
which is possible because Γ is an open subgroup of OL, this product will be in
1 + πNΓ and therefore 1 + pNKΓ will be a subgroup of O×L . �

Claim 8.2. The cohomologies of Γ all vanish.

Choose N such that pNKOL ⊆ pKΓ. Then the last term in (8.1) is in p2N
K OL ⊆

pN+1
K Γ. This suggests that we ought to filter 1 + pNKΓ with additive subquotients,

that is, by 1 + pN+i
K Γ, so that

(1 + pN+i
K Γ)/(1 + pN+i+1

K Γ) ' Γ/pKΓ ' kK [G]

for all i ≥ 0 as additive groups by the above calculation, where kK denotes the
residue field of K. Moreover, these isomorphisms are Galois-equivariant, or G-
equivariant , as the G-action preserves all terms (Γ is preserved by assumption),
hence acts on both sides, and is preserved by the isomorphism. Thus, by Claim 7.10,

Ĥj(G, (1 + pN+i
K Γ)/(1 + pN+i+1

K Γ)) = Ĥj(G, kK [G]) = 0,

for each i ≥ 0 and j. As a corollary, for which we need the following lemma,

(8.2) Ĥj(G, (1 + pNKΓ)/(1 + pN+i
K Γ)) = 0
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for all i ≥ 0 and j.

Lemma 8.3. For any short exact sequence

0→M → E → N → 0

of G-modules, Ĥi(G,M) = Ĥi(G,N) = 0 implies Ĥi(G,E) = 0 for each i.

Proof. By (6.4), we have an exact sequence

Ĥi(G,M)︸ ︷︷ ︸
0

α−→ Ĥi(G,E)
β−→ Ĥi(G,N)︸ ︷︷ ︸

0

,

hence Ĥi(E) = Ker(β) = Im(α) = 0, as desired. �

Now, we have an exact sequence

0→
1 + pN+i

K Γ

1 + pN+i+1
K Γ

→ 1 + pNKΓ

1 + pN+i+1
K Γ

→ 1 + pNKΓ

1 + pN+i
K Γ

→ 0,

so (8.2) follows by induction on i and Lemma 8.3.
It remains to show that Ĥj(1 + pNΓ) = 0. In a perfect world, we would have

Ĥj(G, lim←−
n

Mn) = lim←−
n

Ĥj(G,Mn)

for any sequence of modules with a G-action and G-equivariant structure maps.
Thus would then imply

Ĥj(1 + pNKΓ) = Ĥj
(

lim←−
i≥0

(1 + pNKΓ)/(1 + pN+i
K Γ)

)
= lim←−

i≥0

Ĥj((1 + pNk Γ)/(1 + pN+i
K Γ))

= lim←−
i≥0

0

= 0

by (8.2), as our filtration is complete. Thus, we need to find some way to justify
commuting Tate cohomologies and inverse limits.

Lemma 8.4. Suppose we have a sequence of modules

(8.3)

...
...

...

0 Mn+1 En+1 Nn+1 0

0 Mn En Nn 0

...
...

...

with exact rows. Then we have an exact sequence

0→ lim←−
n

Mn
ϕ−→ lim←−

n

En
ψ−→ lim←−

n

Nn.
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Moreover, if Mn → Mn+1 is surjective for each n, then ψ is as well (otherwise, it
may not be!).

Proof. Evidently, ϕ is injective, as if x ∈ Ker(ϕ), then each coordinate of
its image is 0, so by compatibility and injectivity of Mn → En for each n, each
coordinate of x is 0, hence x = 0. Similarly, Ker(ψ) = Im(ϕ) by exactness of each
row in (8.3).

To see (intuitively) how surjectivity of ψ can fail, consider a compatible system
(xn) ∈ lim←−nNn. We can lift each xn to some yn ∈ En, but it is unclear how to do
it compatibly, so that (yn) ∈ lim←−nEn.

Now assume that that each of the maps Mn →Mn+1 is surjective. Let (xn) ∈
lim←−nNn, and suppose we have constructed yn ∈ En for some n. Choose any ỹn+1 7→
xn+1 via the map En+1 → Nn+1, and let αn+1 be the image of ỹn+1 in En. Then
yn − αn+1 ∈ Mn as it vanishes in Nn, and it lifts to βn+1 ∈ Mn+1 by assumption.
If we now define yn+1 := ỹn+1 + βn+1, then this maps to αn+1 + yn − αn+1 = yn
in En and to xn+1 in Nn+1 as βn+1 maps to 0 in Nn+1, hence by induction there
exists a compatible system (yn) ∈ lim←−nEn mapping to (xn) via ψ, as desired (note
that we may express this result as a surjection En+1 � En ×Nn Nn+1, i.e., to the
fibre product).. �

Proposition 8.5. If

(8.4) · · ·�Mn+1 �Mn � · · ·�M0

is a sequence of G-modules, and Ĥi(Mn+1)� Ĥi(Mn) for all n and i, then

Ĥi(lim←−
n

Mn) = lim←−
n

Ĥi(Mn)

for all i.

Proof. We provide a proof for Ĥ0. Let M := lim←−nMn, so that we are com-
paring Ĥ0(M) = MG/N(M) and lim←−n Ĥ

0(Mn) = lim←−nM
G
n /N(Mn). This amounts

to showing that the natural map

(lim←−
n

MG
n )/(lim←−

n

N(Mn))
∼−→ lim←−

n

(MG
n /N(Mn))

is an isomorphism. We have a commutative diagram
...

...
...

0 N(Mn+1) MG
n+1 Ĥ0(G,Mn+1) 0

0 N(Mn) MG
n Ĥ0(G,Mn) 0,

...
...

...

αn

and we claim that αn is surjective for each n. Indeed, let x ∈ N(Mn), so that x =
N(y) for some y ∈ Mn. Lifting y to an element z ∈ Mn+1, we have αn(N(z)) = x,
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as desired. Thus, by Lemma 8.4, we have

lim←−
n

Ĥ0(Mn) = (lim←−
n

MG
n )/(lim←−

n

N(Mn)).

Now, we have

Ĥ0(lim←−
n

Mn) = (lim←−
n

Mn)G/N(lim←−
n

Mn) = MG/N(M).

It is clear that (lim←−nMn)G = lim←−nM
G
n , since G acts on each of the coordinates of

lim←−nMn, so it remains to show that N(lim←−nMn)
∼−→ lim←−n N(Mn). Letting Kn :=

Ker(N: Mn →Mn) for each n, we have a commutative diagram
...

...
...

0 Kn+1 Mn+1 N(Mn+1) 0

0 Kn Mn N(Mn) 0.

...
...

...

βn

We’d like to show that βn is surjective. Recall that Ĥ1(G,Mn) = Kn/(1 −
σ)Mn, and thus we have a commutative diagram

...
...

...

0 (1− σ)Mn+1 Kn+1 Ĥ1(G,Mn+1) 0

0 (1− σ)Mn Kn Ĥ1(G,Mn) 0.

...
...

...

γn βn δn

Now, γn is surjective (the proof is similar to that for αn), and δn is surjective by
hypothesis. Thus, βn is surjective by the Snake Lemma, and so Lemma 8.4 implies

lim←−
n

N(Mn) = (lim←−
n

Mn)/(lim←−
n

Kn) = N(lim←−
n

Mn).

It follows that Ĥ0(lim←−nMn) = lim←−n Ĥ
0(Mn), as desired. �

Corollary 8.6. For a sequence (8.4), if Ĥi(Mn) = 0 for all n and i, then
Ĥi(lim←−nMn) = 0. In particular, Ĥi(1 + pNKΓ) = 0, where we have set Mi :=

(1 + pNKΓ)/(1 + pN+i
K Γ) for each i.

It follows that, since 1 + pNKΓ ⊆ O×L is a (additive, with a normal basis) finite-
index subgroup, we have χ(O×L ) = χ(1+pNK) = 1, which establishes (2) of Claim 7.8.
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