
LECTURE 13

Homotopy Coinvariants, Abelianization, and Tate
Cohomology

Recall that last time we explicitly constructed the homotopy invariantsXhG of a
complex X of G-modules. To do this, we constructed the bar resolution P can

G

qis−−→ Z,
where P can

G is a canonical complex of free G-modules in non-positive degrees. Then
we have a quasi-isomorphism XhG ' HomG(P can

G , X).
In particular, we have

· · · Z[G3] Z[G×G] Z[G] 0 · · ·

· · · 0 0 Z 0 · · ·

ε

for P can
G , with differential of the form (g1, g2) 7→ g1g2 − g1 (for d−1; the G-action

is always on the first term). Note that if G is finite, then these are all finite-rank
G-modules.

For every G-module M , we have

· · · → 0→M
m 7→(gm−m)g∈G−−−−−−−−−−−→

∏
g∈G

M︸ ︷︷ ︸
{ϕ : G→M}

→
∏
g,h∈G

M → · · ·

via some further differential, forMhG. We can use this expression to explicitly com-
pute the first cohomology of MhG. It turns out that a function ϕ : G→M is killed
by this differential if it is a 1-cocycle (sometimes called a twisted homomorphism),
that is, ϕ(gh) = ϕ(g) + g · ϕ(h) for all g, h ∈ G via the group action. Similarly, ϕ
is a 1-coboundary if there exists some m ∈ M such that ϕ(g) = g ·m −m for all
g ∈ G. The upshot is that

H1(G,M) := H1(MhG) = {1-cocycles}/{1-coboundaries}.

As a corollary, if G acts trivially on M , then H1(G,M) = HomGroup(G,M), since
the 1-coboundaries are all trivial, and the 1-cocycles are just ordinary group homo-
morphisms. This also shows that zeroth cohomology is just the invariants, as we
showed last lecture.

Now, our objective (from a long time ago) is to define Tate cohomology and
the Tate complex for any finite group G. We’d like Ĥ0(G,M) = MG/N(M) =

Coker(MG
N−→ MG), because it generalizes the central problem of local class field

theory for extensions of local fields. Recall that MG = M/(g − 1) (equivalent to
tensoring with the trivial module, and dual to invariants, which we prefer as a
submodule), so that this map factors throughM and induced the norm map above.
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Our plan is, for a complex X of G-modules, to form

XhG
N−→ XhG → XtG := hCoker(N).

Thus, we first need to define the homotopy coinvariants XhG.
Note that if M is a G-module, then MG = M ⊗Z[G] Z. Define IG := Ker(ε), so

that we have a short exact sequence

0→ IG → Z[G]
ε−→ Z→ 0∑

i

nigi 7→
∑
i

ni,

We claim that IG is Z-spanned by {g − 1 : g ∈ G} (which we leave as an exercise).
A corollary is that

Z[G]⊕G → Z[G]→ Z→ 0

is exact, since Z[G]⊕G � IG via 1 7→ g − 1 on the gth coordinate.

Remark 13.1. The correct algorithm for computing tensor products is as fol-
lows: recall that tensor products are right-exact, that is, they preserve surjections,
and tensoring with the algebra gives the original module. To tensor with a module,
take generators and relations for that module, use it to write a resolution as above,
tensor with that resolution, giving a matrix over a direct sum of copies of that
module, and then take the cokernel.

It would be very convenient if we could define MhG via an analogous process
for chain complexes.

Definition 13.2. If X and Y are chain complexes, then

(X ⊗ Y )i :=
⊕
j∈Z

Xj ⊗ Y i−j ,

with differential
d(x⊗ y) := dx⊗ y + (−1)jx⊗ dy

If X is a complex of right A-modules, and Y is a complex of left A-modules, then
X ⊗A Y is defined similarly.

Note that the factor of (−1)j ensures that the differential squares to zero.
Also, there is no need to worry about left and right A-modules for algebras, since
left and right algebras are isomorphic via changing the order of multiplication; for
G-modules, this means replacing every element with its inverse.

Now, a bad guess forXhG would beX⊗Z[G]Z, because it doesn’t preserve acyclic
complexes, equivalently quasi-isomorphisms. A better guess is to take a projective
resolution PG ' Z, e.g. P can

G , and tensor with that instead: XhG := X ⊗Z[G] PG.

Definition 13.3. A complex F of left A-modules is flat is for every acyclic
complex Y of right A-modules, Y ⊗A F is also acyclic, that is, − ⊗A F preserves
injections.

We now ask if PG is flat. In fact:

Claim 13.4. Any projective complex is flat.

An easier claim is the following:

Claim 13.5. Any complex F that is bounded above with F i flat for all i is flat.
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To prove this claim, we will use the fact that projective modules are flat, as they
are direct summands of free modules, which are trivially flat (i.e., if F = F1 ⊕ F2,
then F ⊗M = (F1 ⊗M)⊕ (F2 ⊗M)).

Proof. Case 1. Suppose F is in degree 0 only, i.e., F i = 0 for all i 6= 0. For
every complex Y = Y •, we have

· · · → Y i ⊗A F
di⊗idF−−−−−→ Y i+1 ⊗A F → · · ·

for Y ⊗A F . Since F is flat, we have Hi(Y ⊗A F ) = Hi(Y )⊗A F for each i (since
F flat means that tensoring with F commutes with forming kernels, cokernels and
images), so if Y is acyclic, then Y ⊗A F is as well.

Case 2. Suppose F is in degrees 0 and −1 only, i.e., F is of the form

· · · → 0→ F−1 → F 0 → 0→ · · · ,
and so F • = hCoker(F−1 → F 0). Then since tensor products commute with
homotopy cokernels, we obtain

Y ⊗A F = hCoker(Y ⊗A F−1 → Y ⊗A F 0),

so by Case 1, if Y is acyclic, then Y ⊗A F 0 and Y ⊗A F−1 are as well, hence
Y ⊗A F is as well by the long exact sequence on cohomology. A similar (inductive)
argument gives the case where F is bounded.

Case 3. In the general case, form the diagram

F0 · · · 0 0 0 F 0 0 · · ·

F1 · · · 0 0 F 1 F 0 0 · · ·

F2 · · · 0 F 2 F 1 F 0 0 · · ·

...
...

...
...

...
...

id

d

id id

d

id

d

id id

Clearly all squares of this diagram commute, hence these are all morphisms of
complexes, and F = lim−→i

Fi. Since direct limits commute with tensor products
(note that is not true for inverse limits because of surjectivity), we have Y ⊗A F =
lim−→i

Y ⊗AFi. By Case 2, Y ⊗AFi is acyclic for each i, so since cohomology commutes
with direct limits (because they preserve kernels, cokernels, and images), if Y is
acyclic, then Y ⊗A F is too. �

Remark 13.6. Let Y be a complex of A-modules, choose a quasi-isomorphism
F

qis−−→ Y , where F is flat, and define Y ⊗der
A X := F ⊗AX. Then this is well-defined

up to quasi-isomorphism, which is well-defined up to homotopy, etc. (it’s turtles
all the way down!).

Definition 13.7. The ith torsion group (of Y against X) is TorAi (Y,X) :=
H−i(Y ⊗der

A X).

Definition 13.8. The homotopy coinvariants of a chain complex X is the
complex XhG := X ⊗der

Z[G] Z ' X ⊗Z[G] PG (which we note is only well-defined up
to quasi-isomorphism).
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Definition 13.9. Hi(G,X) := H−i(XhG) (where we note that the subscript
notation is preferred as XhG is generally a complex in non-positive degrees only).

We now perform some basic calculations.

Claim 13.10. If X is bounded from above by 0, then H0(G,X) = H0(X)G (the
proof is similar to that of Claim 12.5).

Claim 13.11. H1(G,Z) = Gab, where Gab denotes the abelianization of G.

Note that this is sort of a dual statement to what we saw at the beginning of
lecture; H1(G,M) had to do with maps G→M , which are the same as maps from
Gab →M , and here H1(G,Z) is determined by the maps out of G.

Proof. Recall the short exact sequence

0→ IG → Z[G]
ε−→ Z→ 0.

The long exact sequence on cohomology gives an exact sequence

H1(G,Z[G])→ H1(G,Z)→ H0(G, IG)→ H0(G,Z[G])→ H0(G,Z).

We have
H0(G,Z[G]) = H0(Z[G])G = Z[G]⊗Z[G] Z = Z

by Claim 13.10. Certainly H0(G,Z) = H0(Z)G = Z, and H1(G,Z[G]) = 0 as

Z[G]hG := Z[G]⊗Z[G] PG = PG ' Z

is a quasi-isomorphism. Thus, our exact sequence is really

0→ H1(G,Z)
∼−→ H0(G, IG)→ Z ∼−→ Z,

which gives the noted isomorphism. The upshot is that

H1(G,Z) = (IG)G = IG/I
2
G

since MG = M/IG ·M .

Claim 13.12. The map

Z[G]/I2
G → Gab × Z, g 7→ (ḡ, 1)

is an isomorphism.

This would imply that IG/I2
G = Ker(ε)/I2

G = Gab, as desired.

Proof. First note that the map above is a homomorphism. Indeed, letting
[g] ∈ Z[G] denote the class of g, we have

[g] + [h] 7→ (ḡh̄, 2)

[g] 7→ (ḡ, 1)

[h] 7→ (h̄, 1)

for any g, h ∈ G, and the latter two images add up to the first. We claim that this
map has an inverse, induced by the map

G× Z→ Z[G]/I2
G, (g, n) 7→ [g] + n− 1.

This is a homomorphism, as

([g]− 1)([h]− 1) = [gh]− [g]− [h] + 1 ∈ I2
G,
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and therefore
([g]− 1) + ([h]− 1) ≡ [gh]− 1 mod I2

G,

as desired. Finally, they are inverses, as

(ḡ, 1) 7→ [g] + 1− 1 = [g] and [g] + n− 1 7→ (ḡ, 1)(1, n− 1) = (ḡ, n),

as desired. �

This proves the claim. �

Finally, we define the norm map XhG
N−→ XhG to be the composition

XhG = X ⊗Z[G] PG → X ⊗Z[G] Z→ HomZ[G](Z, X)→ HomZ[G](PG, X) = XhG,

where the second map is via degree-wise norm maps (using tensor-hom adjunction).
We then set

XtG := hCoker(XhG
N−→ XhG),

which we claim generalizes what we had previously for cyclic groups up to quasi-
isomorphism, so that we may define

Ĥi(G,X) := Hi(XtG).

Soon we will prove:

Claim 13.13 (lcft). For a finite group G and extension L/K of local fields,

PG → L×[2]

is an isomorphism on Tate cohomology.

This gives that

Ĥ−2(G,Z) ' Ĥ0(G,L×) = K×/N(L×).

We have an exact sequence

0 = H−2(ZhG)→ Ĥ−2(G,Z)
∼−→ H−1(ZhG)︸ ︷︷ ︸

H1(G,Z)=Gab

→ H−1(ZhG) = 0,

since ZhG is in non-negative degrees. Thus, for an extension L/K of local fields
with Galois group G, we have

L×/N(L×) ' Gab.
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