LECTURE 6

Exact Sequences and Tate Cohomology

Last time we began discussing some simple homological algebra; our motivation
was to compute the order of certain finite abelian groups (in particular, K> /N(L*),
where L/K is a cyclic extension of local fields). Recall the following definition:

DEFINITION 6.1. A sequence

_ d‘n d‘n.+1
cee ey Xl S xn L XL

is ezact if for each n, we have Ker(d"*!) = Im(d"), where we refer to the ‘d"’ as
differentials.

To solve this equation, one typically shows that if d”*! kills an element, then
it is in the image of d". We saw that for a short exact sequence

0—->M—FE—»N—Q0,

we have M = E/N and #FE = #M - #N, so short exact sequences are an effective
way of measuring the size of abelian groups. We also saw that for any such short
exact sequence and n > 1, there is a long exact sequence

(6.1) 0— Mn] = E[n] = N[n] > M/n — E/n — N/n — 0,
where we recall that
Mn] :={x € M : nx =0} = Tor;(M,Z/n) = H (M ®r, Z/n),

which denote the torsion subgroup and first homology group, respectively, and
similarly for £ and N. The boundary map ¢ lifts an element € N[n] to & € E,
so that nz € M since nz = 0 in N, and then maps nZ to its equivalence class in
M /n. Tt remains to check the following claims:

CLAIM 6.2. The boundary map § is well-defined.

PROOF. Suppose Z is another lift of z. Then 7 — Z € M as its image in N is
zero, hence n(Z — =) € nM, so nZ =na in M/nM. O

CLAIM 6.3. The sequence in (6.1) is ezact.

PROOF. This is clear at all maps aside from the boundary map. If §(z) = nZ =
0 in M/n for some x € N[n] with lift Z € E, then £ € M, and therefore = 0 in
N. Hence z € N[n] and so Z € E[n] by exactness. Similarly, if x € M /n has image
zero E/n, then & = ny for some y € E, where Z is a lift of z to M. Projecting
down to N, we see that 0 = nj by exactness, and therefore § € N[n]. So ny € M,
again by exactness, and §(5) = ny = x as classes in M/n, as desired. O

We have the following useful lemma:
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LEMMA 6.4. Suppose

dl d2 dn—l _ d’n,
00X S xt & & x4 x50

is exact, and all X* are finite. Then
#XO H#X? L =HXH#X

PRrROOF. We proceed by induction on n. The result is clear for n = 1, so suppose
it holds for n — 1. Form the exact sequences

n—1
05 X0 > o xm 1L ) =0

and
0= Im(d* ") —» X» 1 L5 x™ 0.

Suppose n is even. Then

xn-1
#XO . # X% X = # X0 HX? XL M
= #XP#X3 . H#Im(d" ) - L
#Im(dn—1)
= H#X1 H#X3 gL
by the inductive hypothesis. The proof for odd n is similar. O

DEFINITION 6.5. Let M be an abelian group with M/n and M|n] finite. Then

#(M/n)
X(M) == xn(M) := - ——=
#(M|[n])
is the Fuler characteristic of M.
EXAMPLE 6.6. (1) If M is finite, then x(M) = 1. To see this, observe

that
0— Mn —-M= M— M/n—0

is exact, and so by Lemma 6.4, #(M|n]) - #M = #M - #(M/n).
(2) If M =Z, then x(M) = n, since M[n] =0 and M/n = Z/n has order n.

The following lemma is an important fact about Euler characteristics:
LEMMA 6.7. For a short exact sequence
0—-M-—FE—N—Q0,

if x exists for two of the three abelian groups, then it exists for the third, and
X(M) - x(N) = x(E), where “exists” means that (say for M) M/n and M[n] are
both finite.

PRrROOF. We have an exact sequence
0 — M[n] = E[n] > N[n] » M/n — E/n— N/n — 0.
n—1 n
More generally, note that if X! AT xn Ly g exact, then X" is finite if
X"~ and X™*! are, since there is a short exact sequence

0 — Im(d" ') = Ker(d") — X" — Im(d") — 0,
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where the outer two groups are finite and therefore #X™ = #Ker(d") - # Im(d") is
too. Thus, all groups in the sequence are finite, and

#(M[n]) - #(N[n]) - #(E/n) = #(E[n]) - #(M/n) - #(N/n)
by Lemma 6.4, which yields the desired expression. (I

As an application, let us compute #(K* /(K*)™). Observe that

# KX KX n
(i) = U
# (K> [n])
where the denominator is the number of nth roots of unity in K. Moreover, we
have an exact sequence

0—0f K570,
and so by Lemma 6.7, x(K*) = x(Ox)x(Z) = nx(Of). Thus, we'd really like to
compute x(OF).
A good heuristic to use is that if O} contains some open, that is, finite index,

subgroup T, then I' ~ O, which is true if char(K) = 0 by p-adic exponentials. It
then follows that

(6.2) X(0k) = x(Mx(Og/T) = x(T') = x(Ox)

under addition, since Oy /T is finite by assumption. Then Og[n] = 0 additively
(since O is an integral domain), and x(Of) = #(Ox/n) = |n|", where |z|x :=
¢~ "®) denotes the normalized (i.e., v(7) = 1 for a uniformizer 7) absolute value
inside K, and ¢ denotes the order of the residue field. The resulting formula

n - #(K*[n])
In|x

(6.3) HE/(K)") =

recovers that already proven in Problem 1(b) of Problem Set 1 for n = 2 (though
the same methods would also work for general n). The proof without exponentials
uses the fact that, for large enough NN,

is an isomorphism (which can be shown using filtrations; this is the multiplicative
version of the additive statement we had earlier).
We now introduce the notion of Tate cohomology for cyclic groups.

DEFINITION 6.8. If G is a (not necessarily finite) group, then a G-module A is
an abelian group, with G acting on A by group automorphism. Equivalently, there
is a homomorphism G — Aut(A), where the action of G satisfies

(1) g-(a+b)=g-a+g-b,
(2) (gh)-a=g-(h-a),
for all g,h € G and a,b € A.

EXAMPLE 6.9. If L/K is an extension of fields with G := Gal(L/K), then L
and L* are G-modules, since field automorphisms preserve both operations. This
will be the main example concerning us.

Now, assume G is finite, and let A be a G-module.
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DEFINITION 6.10. The first Tate cohomology group is
H(G, A) := A%/N(4),
where
A% :={acA:g-a=aforall gecG}
denotes the set of fixed points.

Note that the norm map is defined as

N: A— A, a»—)Zg~a,
geG

so we really do need the assumption that G be finite. Moreover, this expression
shows that the norm map factors through A% C A.

EXAMPLE 6.11. (1) Returning to Example 6.9 with A = L, we have AY =
K,and N: L — K is the field trace, hence H(L/K) = K/T(L) = 0, since
L/K must be separable.

(2) If A = L*, then (L*)¢ = K*, and H(L*) = K*/N(L*). Thus, our
earlier problem is now rephrased as computing H 9@, LX) for L/K acyclic
extension of local fields.

(3) If A is any abelian group, then we say that G acts on A trivially if g-a = a
for all g € G and a € A. Then H°(G, A) = A/#G. Thus, the notion of
Tate cohomology entirely generalizes our previous discussion.

DEFINITION 6.12. A map (or G-morphism, or any other reasonable nomencla-

ture) of G-modules A L Bisa group homomorphism preserving the action of G,
that is, f(g-a) =g f(a) for all g € G and a € A.

A (short) exact sequence of G-modules is a (short) exact sequence of abelian
groups, but where all maps are G-morphisms.

EXAMPLE 6.13. 1 — Of — L* 2 Z — 1 is a short exact sequence of G-
modules, where G := Gal(L/K) and G acts trivially on Z and on Of via the
Galois action.

Now, let

0>A—-B—-C—0

by a short exact sequence of G-modules. Then we obtain an exact sequence
(6.4) (G, A) % 56, B) 2 16, 0),

where « is not necessarily injective (as we saw when the group action was trivial

in the previous lecture), and § is not necessarily surjective. This is because Tate

cohomology involves two operations: one, taking fixed points, is left-exact, but not

right-exact, and the other, taking a quotient, is right-exact but not left-exact.
Now, assume G = Z/nZ, and let o € G be a generator (i.e. 1).

DEFINITION 6.14. The second Tate cohomology group is

HY(G,A) :=Ker(N: A — A)/(1—0)A.
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Note that the reason we take the quotient is because, for any = := y — oy for
y € A, we get

N(x)=33+0'x+~--+0”71x:y—ay+ay—02y+~--+a"*1y 0,

— O-ny —
—~~

Y
and we’d like to omit these trivial cases for the kernel.

Now, we claim that for an exact sequence

0—-A—-B—-C—0,

there is an exact sequence
(6.5) H(A) = HY(B) —» H°(C) & H'(A) —» H(B) —» H'(C)

via the boundary map §, which lifts any € C%/N(C) to # € B, and then takes
(1 —0)Z. Since z € O, we have (1 —o)x = 0 in C, and therefore (1 — 0)% € A.
Moreover, (1 — o)z is clearly killed by the norm in A, hence it gives a class in
H'(G, A). Again, we check the following:

CLAIM 6.15. The boundary map 0 is well-defined, i.e., it doesn’t depend on the
choice of &.

PROOF. If & is another lift, then & — & € A since C' ~ B/A, so (1 — 0)(Z — Z)
is zero in H(G, A).

O

CLAIM 6.16. The sequence (6.5) extends to be exact.

PrOOF. As before, we verify this only at the boundary map. Letting x €
BY/N(B), its image in H'(A) is (1 — o)z = 0. If 2 € Ker(§), then & € B and
hence in H°(B) for some lift & of z.

Letting 2 € C%/N(C), its image in H'(A) is (1 — 0)&, where Z is a lift of x
to B, hence it is killed in H'(B) by definition. If z € H'(A) is 0 in H'(B), then
x € (1 — 0)B, hence x € Im(9). O
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