18.786: Topics in Algebraic Number Theory (spring 2006) Problem Set 6, due Thursday, April 6

Reminder: this course has one in-class midterm, scheduled for Thursday, April 6, the same day as this problem set is due. The intent is for the midterm to be pretty easy: to that end, I'll allow open book and notes (but no computers), and the format will be something like "Do at least A of the following B problems now, and attach the remaining ones to the next problem set."

- 1. Janusz p. 78, exercise 2.
- 2. Janusz p. 81, exercise 5.
- 3. Let K be a number field, and let S be a finite set of nonzero primes in \mathfrak{o}_K , and write $\mathfrak{o}_{K,S}$ for the localization of \mathfrak{o}_K at the multiplicative set generated by S (i.e., you take elements which generate ideals whose only prime factors are elements of S).
 - (a) Prove that the torsion subgroups of $\mathfrak{o}_{K,S}^*$ and of \mathfrak{o}_K^* are equal.
 - (b) Prove that $\mathfrak{o}_{K,S}^*/\mathfrak{o}_K^*$ (which is torsion-free by (a)) is free of rank #S. (Hint: every ideal has a power which is principal. That may not give you the entire quotient, but it's enough to prove the claim.)

You have now extended Dirichlet's units theorem to cover "S-units".

- 4. Use Minkowski's bound to prove that the number field $\mathbb{Q}[x]/(x^3 x^2 x + 2)$ has class number 1. You may use SAGE to find the discriminant without further justification.
- 5. Let $P(x) \in \mathbb{Z}[x]$ be an irreducible monic polynomial whose discriminant D is squarefree. Prove that the splitting field of P(x) contains and is everywhere unramified over $\mathbb{Q}(\sqrt{D})$. (This shows that Janusz, Theorem I.13.9 becomes quite false if you replace \mathbb{Q} by a "random" quadratic number field.)
- 6. A *CM field* (for "complex multiplication") is a totally imaginary quadratic extension of a totally real number field.
 - (a) Let K be a totally complex number field; then for each embedding $K \hookrightarrow \mathbb{C}$, complex conjugation on \mathbb{C} induces an automorphism of K. Prove that these are all the same automorphism if and only if K is a CM field.
 - (b) Prove that for any odd prime p, $\mathbb{Q}(\zeta_p)$ is a CM field.
 - (c) Prove that every unit u in $\mathbb{Z}[\zeta_p]$ is equal to a power of ζ_p times a totally real element. (Hint: divide u by its conjugate.)
- 7. In class several lectures ago, I defined the *different* Diff(L/K) of an extension L/K of number fields as the ideal of \mathfrak{o}_L inverse to the fractional ideal

$$\{x \in \mathfrak{o}_L : \operatorname{Trace}_{L/K}(xy) \in \mathfrak{o}_K \text{ for all } y \in \mathfrak{o}_L\}.$$

and I pointed out that it's generated by $f'_{\alpha}(\alpha)$ for all $\alpha \in \mathfrak{o}_K$, where f_{α} denotes the characteristic polynomial of multiplication-by- α on L as a K-vector space.

- (a) Prove that $\operatorname{Disc}(L/K) = \operatorname{Norm}_{L/K}(\operatorname{Diff}(L/K))$.
- (b) Let M/L/K be a tower of number fields. Prove that as ideals of \mathfrak{o}_M ,

$$\operatorname{Diff}(M/L)\operatorname{Diff}(L/K) = \operatorname{Diff}(M/K),$$

and deduce as a corollary that

$$\Delta(M/K) = \Delta(L/K)^{[M:L]} \operatorname{Norm}_{L/K}(\Delta(M/L)).$$

- 8. (a) Suppose K is a number field which contains and is unramified over the Gaussian rationals $\mathbb{Q}(i)$. Determine, up to sign, the absolute discriminant of K as a function of its absolute degree. (Hint: use the previous problem.)
 - (b) Use (a) and the Minkowski discriminant bound to prove that $\mathbb{Q}(i)$ admits no nontrivial everywhere unramified extension.
- 9. Go to http://www.mathpuzzle.com/, look up the 14 Mar 2006 entry, and prove "Snevetz's Last Theorem". (Hint: guess what number field is defined by this polynomial.) Unfortunately, it's too late to collect the \$500...