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13. Equations in two variables

Maybe surprisingly, winding numbers can be used to prove existence results for solutions of

systems of equations (two equations in two variables).

• Given such a system, and a prospective region where a solution could be located, one

constructs an appropriate smooth loop. If that loop has nonzero winding number, the

system must have at least one solution in our region. (This is similar to how one can

use the intermediate value theorem to prove, for instance, that there is an x ∈ (0, π/2)

with cos(x) = x.)

• Deformation methods for the winding number, such as man-dog-lamppost, are particu-

larly useful in this context.

(13a) Existence of solutions. Let’s start with functions g(a, b) and h(a, b), defined and smooth

(have derivatives of any order) for all (a, b) ∈ R2. We are given (x, y), and are looking for solutions

(a, b) of

(13.1)
g(a, b) = x,

h(a, b) = y,

This is pretty general, g and h can be almost anything! For a more geometric picture, we combine

our functions into a map

(13.2) F (x, y) = (g(x, y), h(x, y)) : R2 −→ R2.

In your mind, imagine two copies of the plane: that where F is defined, with coordinates (a, b),

and that where it takes values, with coordinates (x, y). Then, if q = (x, y) is given, what we

are looking for in (13.1) are p = (a, b) such that F (p) = q. Fix some r > 0, take the circle

c(t) = (r cos(t), r sin(t)) of radius r around the origin (a loop with T = 2π), and look at its image

under F :

(13.3)

d(t) = F (c(t)) = F (r cos(t), r sin(t)) = (g(r cos(t), r sin(t)), h(r cos(t), r sin(t))).

a

b

c(t) = (r cos(t), r sin(t))

F

x

y

d(t) = F (c(t))

We’ll be interested in the winding number of d around our chosen point q. Of course, for that to

be defined, we have to assume that d(t) never becomes equal to q: in other words, there shouldn’t

be any solutions of F (p) = q on the circle ∥p∥ = r.

Theorem 13.1. Suppose that wind(d, q) ̸= 0. Then there must be a

(13.4) p ∈ R2 with ∥p∥ < r, which solves F (p) = q.
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Proof. Look at the deformation obtained by shrinking the circle in the (a, b) plane, depending

on a parameter s ∈ [0, 1]:

(13.5)
cs(t) = (sr cos(t), sr sin(t)),

ds(t) = F (cs(t)) = F (sr cos(t), sr sin(t)).

At one end, d0(t) = F (0, 0) is the constant path. At the other end, d1(t) = d(t) is the path from

our statement. The proof is by contradiction. Suppose that there is no solution (13.4). This

implies that all loops ds avoid q. By deformation invariance of the winding number, one would

have wind(d0, q) = wind(d1, q). But d0 is a constant path, and therefore its winding numbers are

0, which is a contradiction. □

Example 13.2. We want to show that there’s a solution (a, b) ∈ R2 of

(13.6)
a− cos(a+ b4) = 0,

b− cos(ab) = 0,

so F (a, b) = (a− cos(a+ b4), b− cos(ab)) = (a, b)− (cos(a+ b4), cos(ab)). The relevant loop is

(13.7) d(t) =
(
r cos(t), r sin(t)

)
−
(
cos(r cos(t) + r4 sin(t)4), cos(r2 cos(t) sin(t))

)
.

To see whether our method applies, we need to know wind(d, o), where o = (0, 0) is the origin,

and r has been chosen appropriately (we don’t yet know how). Looking at (13.7), the two terms

have somewhat different sizes:

∥(r cos(t), r sin(t))∥ = r,(13.8)

∥(cos(r cos(t) + r4 sin(t)4), cos(r2 cos(t) sin(t)))∥ < 2;(13.9)

in the second case, this is because both the x and y coordinate lie in [−1, 1]. If we choose r ≥ 2,

the man-dog-lamppost theorem applies, with (r cos(t), r sin(t)) being the man, d(t) the dog, and

the lamppost at the origin o = (0, 0). The consequence is that

(13.10) wind(d, o) = wind(t 7→ (r cos(t), r sin(t)), o) = 1.

It follows that (13.6) has a solution with a2+ b2 ≤ 22 = 4. Note that it’s pretty clearly impossible

to find the solution explicitly!

Our argument didn’t use anything about (13.6) except that one side was just (a, b), and the other

side was bounded (13.9). In fact, the same reasoning gives a general statement:

Corollary 13.3. Suppose that k(a, b) and l(a, b) are functions (defined on R2 and smooth) which

are bounded (above and below, with bounds that hold for all a, b). Then, the system of equations

(13.11)
a = k(a, b),

b = l(a, b)

always has a solution.

(13b) More examples. So far, we have only dealt with cases where the winding number is 1.

Let’s enlarge our repertoire:
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Example 13.4. Take F (a, b) = (a2 − 1, b), q = (0, 0), and r > 1. The relevant loop is

(13.12) d(t) = F (r cos(t), r sin(t)) = (r2 cos(t)2 − 1, r sin(t)).

Let’s compute the winding number using the intersect-a-ray approach. Specifically, we look at

points where d(t) is a positive multiple of w = (1, 0). This happens at t = 0 and t = π, where

(13.13) d(0) = d(π) = (r2 − 1, 0), d′(0) = (0, r), d′(π) = (0,−r).

Therefore, d′(t) × w is negative at t = 0 and positive at t = π, which means that the winding

number is zero! This may be surprising because we clearly have solutions (a, b) = (−1, 0) and

(a, b) = (1, 0) of F (a, b) = (0, 0). This is not a contradiction to our theorem, it just means that

the converse implication doesn’t hold in general.

(13c) A counting formula. You may have realized that in our context, two numbers appear:

first, the winding number; and second, the number of solutions to our system of equations. The

existence theorem says that if the first is nonzero, so is the second. That doesn’t mean that the

two numbers are equal: indeed, we’ve seen in examples that that’s not the case generally; and

moreover, such an equality is a priori impossible, as the winding number can be negative, and on

the other hand the number of solutions can be infinite. Nevertheless, there is a relation, under

certain additional assumptions:

Theorem 13.5. Look at a loop (13.3). Assume that for every p as in (13.4), the partial derivatives

∂F/∂a and ∂F/∂b, taken at the point (a, b) = p, are linearly independent vectors. Then

(13.14) wind(d, q) =
∑
p

sign
(∂F
∂a
× ∂F

∂b

)
.

Here, the sum is over all (13.4), and the partial derivatives are taken at those points.

Let’s revisit Example 13.4. We have

(13.15)
∂F

∂a
× ∂F

∂b
= (2a, 0)× (0, 1) = 2a,

which has opposite signs at (a, b) = (1, 0) and (a, b) = (−1, 0). Hence, the two contributions on

the right hand side of (13.14) cancel each other out, which confirms our previous computation

wind(d, o) = 0.
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