
14. COMPLEX POLYNOMIALS 111

14. Complex polynomials

Given how long we’ve been talking about the plane, it’s surprising that complex numbers haven’t

appeared so far. We now fix this:

• One can use winding numbers to detect zeros of complex polynomials.

• Unlike the case of real equations, this is an “if and only if” process, and provides a

count of how many zeros lie in a disc of radius r, assuming that the zeros are counted

with their proper positive multiplicities.

(14a) Complex numbers. A complex number is given by its real and imaginary parts, z =

x + iy, hence is the same as a point (x, y) in the plane. One writes |z| instead of ∥z∥ for its

length, meaning

(14.1) |z| =
√
x2 + y2 for z = x+ iy.

There’s a famous formula for trigonometric functions in terms of the complex exponential,

(14.2) eiθ = cos(θ) + i sin(θ).

This means that complex numbers are written in radial coordinates as z = reiθ. As one sees from

that, the product of complex numbers multiplies the radii and adds the angles:

(14.3) (r1e
iθ1)(r2e

iθ2) = (r1r2)e
i(θ1+θ2).

One can think of smooth loops as taking values in complex numbers, meaning c(t) ∈ C. The

simplest example may be the loop

(14.4) c(t) = eint,

with T = 2π, for some integer n. This goes n times around the radius 1 circle (if n is negative,

that means clockwise). One can see this directly, eint = cos(nt) + i sin(nt); or one can say that

eit goes once around the circle, and then taking the n-th power has the effect of multiplying the

angles by n.

(14b) Roots and multiplicities. Take a complex polynomial of degree n:

(14.5) f(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0, withan ̸= 0.

The fundamental theorem of algebra says that we can always write this as

(14.6) f(z) = a(z − w1)
m1 · · · (z − wk)mk ,

where a = an is the leading coefficient; the roots wi are all different from each other; and the

multiplicities mi are positive integers, whose sum is n. This is a theoretical existence statement,

which basically says that f has n zeros once those are counted with the proper multiplicities. If

we know w is a root, we can actually compute its multiplicity without writing the polynomial in

the form described above:

Lemma 14.1. The multiplicity of a root w is the smallest m such that the m-th derivative of f

at w is nonzero.
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Example 14.2. Take f(z) = z + 3z2 − 3z3 + z4, which satisfies f(1) = 0. We compute

(14.7)

f ′(z) = −1 + 6z − 9z2 + 4z3, f ′(1) = 0,

f ′′(z) = 6− 18z + 12z2, f ′′(1) = 0,

f ′′′(z) = −18 + 24z, f ′′′(1) = 6 ̸= 0,

so the multiplicity at 1 is 3.

From now on, we write mult(f, w) for the multiplicity of f at w (if w is not a root, one can set

that multiplicity to 0).

(14c) The winding number formula. Applying the same idea as in the previous lecture, we

look at the image of a circle of radius r > 0 under f , which is the loop (with T = 2π)

(14.8) d(t) = f(reit) = f(r cos(t) + ri sin(t)).

Suppose that f has is no root on the circle of radius r around the origin, so that the winding

number wind(d, 0) is defined. Then:

Theorem 14.3. For a loop (14.8),

(14.9) wind(d, 0) =
∑
|w|<r
f(w)=0

mult(f, w),

where the sum is over all roots of f lying inside the circle of radius r.

In particular, the winding number is always nonnegative; and it is > 0 if and only if there is a

solution of f(w) = 0 inside the circle. This two-way implication is part of the special magic of

the class of holomorphic functions, of which polynomials are the simplest examples.

Example 14.4. Take f(z) = z5 − z3 − 1
2 . The loop d(t) = f(eit) = e5it − e3it − 1

2 looks like this:

(14.10)
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From that, one reads off the winding number around the origin, wind(d, 0) = 3 (the picture doesn’t

tell you which way the loop goes; but the other direction gives a winding number of −3, which
is impossible). This means that we have three possibilities: either there are three solutions of

f(p) = 0 with |p| < 1, each having multiplicity 1; or two solutions, with multiplicities 1, 2; or a

single solution, with multiplicity 3 (in fact, the first is the case, but you can’t tell that just from

our computation).

Example 14.5. Take f(z) = (z + i)(z − i)(z + 1)(z − 1)(z − 1/4). There is one root with

|p| = 1/4, and four roots with |p| = 1. All roots have multiplicity 1. Consequently, the winding
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number wind(d, 0) remains zero for r < 1/4, and then jumps to 1. The jump happens in a

relatively simple way, by d moving across the origin:

(14.11)
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The winding number remains at that value for 1/4 < r < 1, and then jumps to 5 when crossing

r = 1. At that value, four parts of the loop d all pass through the origin simultaneously:

(14.12)
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Example 14.6. Take f(z) = (z − 1
2 )

3(z − i). This has a root of multiplicity 3 at 1/2, and a root

of multiplicity 1 at i. Correspondingly, we expect the winding number to be 0 for r < 1/2, then

3 for r ∈ (1/2, 1), and finally 4 for r > 1. The jump from 0 to 3 comes with a sudden curling

behaviour:

(14.13)
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(14d) Other values. We have focused on the equation p(z) = 0, but simply by subtracting a

constant from p, one can apply the result to equations p(z) = u for an arbitrary complex number

u.

Corollary 14.7. Take d(t) = p(reit) as before. For every u where it is defined, the winding

number wind(p, u) is nonnegative; and it is > 0 if and only if there is a solution of p(z) = u with

z inside the circle of radius r.
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Example 14.8. Take the leftmost picture from Example 14.5, with r = 0.98. We have not drawn

that, but the motion of the loop is anticlockwise (meaning, to the left at its topmost point). As

a consequence, one can check that the winding numbers are positive for all regions except the

outermost infinite region. It follows that for any u lying in those regions, the equation p(z) = u

has a solution with |z| < 0.98.

Corollary 14.9. Take d1 = p(r1e
it), d2 = p(r2e

it), for some r2 > r1 > 0. Then, for every

complex number u where both winding numbers are defined, we have

(14.14) wind(d2, u) ≥ wind(d1, u).

In other words, as the radius increases, the winding number of our loops around any point can

only go up or stay the same; it can never go down.

(14e) Proof. The proof of the theorem is, as usual for loops, by a deformation argument. We

write our polynomial as a product, but separating the roots that lie inside and outside the circle

of radius r:

(14.15) f(z) =
( ∏

|wi|<r

(z − wi)mi

)( ∏
|wi|>r

)(z − wi)mi .

Now we introduce a parameter s ∈ [0, 1] which changes it like this:

(14.16) fs(z) =
( ∏

|wi|<r

(z − swi)mi

)( ∏
|wi|>r

(sz − wi)
)
.

If |wi| < r is a root of f , then s|wi| is a root of fs. In the second instance, if |wi| > r is a root of

f , then |wi|/s is a root of fs (or for s = 0, there is no corresponding root). In words, the roots

lying inside the circle of radius r move inwards as s becomes smaller, and those lying outside the

circle move to infinity. At no time s does fs actually have a root on the circle. Therefore, if we

define

(14.17) ds(t) = fs(re
it),

then wind(ds, 0) remains the same for all s. For s = 1 we have f1 = f , so d1 = d is the loop

associated to the original polynomial. Now let’s see what we get for s = 0:

(14.18) f0(z) =
( ∏

|wi|<r

zmi

)( ∏
|wi|>r

(−wi)mi

)
= zma,

where m =
∑

|wi|<rmi, and a =
∏

|wi|>r(−wi)
mi is a nonzero constant. The associated loop is

d0(t) = eimta, which goes m times around the circle of radius |c|. Therefore, wind(d0, 0) = m.

The same is therefore true of wind(d, 0) = wind(d1, 0). Looking at the definition of m, that’s

exactly what the theorem says!
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