14. Complex polynomials

Given how long we've been talking about the plane, it's surprising that complex numbers haven't appeared so far. We now fix this:

- One can use winding numbers to detect zeros of complex polynomials.
- Unlike the case of real equations, this is an "if and only if" process, and provides a count of how many zeros lie in a disc of radius r, assuming that the zeros are counted with their proper positive multiplicities.
(14a) Complex numbers. A complex number is given by its real and imaginary parts, $z=$ $x+i y$, hence is the same as a point (x, y) in the plane. One writes $|z|$ instead of $\|z\|$ for its length, meaning

$$
\begin{equation*}
|z|=\sqrt{x^{2}+y^{2}} \quad \text { for } z=x+i y \tag{14.1}
\end{equation*}
$$

There's a famous formula for trigonometric functions in terms of the complex exponential,

$$
\begin{equation*}
e^{i \theta}=\cos (\theta)+i \sin (\theta) \tag{14.2}
\end{equation*}
$$

This means that complex numbers are written in radial coordinates as $z=r e^{i \theta}$. As one sees from that, the product of complex numbers multiplies the radii and adds the angles:

$$
\begin{equation*}
\left(r_{1} e^{i \theta_{1}}\right)\left(r_{2} e^{i \theta_{2}}\right)=\left(r_{1} r_{2}\right) e^{i\left(\theta_{1}+\theta_{2}\right)} \tag{14.3}
\end{equation*}
$$

One can think of smooth loops as taking values in complex numbers, meaning $c(t) \in \mathbb{C}$. The simplest example may be the loop

$$
\begin{equation*}
c(t)=e^{i n t} \tag{14.4}
\end{equation*}
$$

with $T=2 \pi$, for some integer n. This goes n times around the radius 1 circle (if n is negative, that means clockwise). One can see this directly, $e^{i n t}=\cos (n t)+i \sin (n t)$; or one can say that $e^{i t}$ goes once around the circle, and then taking the n-th power has the effect of multiplying the angles by n.
(14b) Roots and multiplicities. Take a complex polynomial of degree n :

$$
\begin{equation*}
f(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}, \quad \text { with } a_{n} \neq 0 \tag{14.5}
\end{equation*}
$$

The fundamental theorem of algebra says that we can always write this as

$$
\begin{equation*}
f(z)=a\left(z-w_{1}\right)^{m_{1}} \cdots\left(z-w_{k}\right)^{m_{k}} \tag{14.6}
\end{equation*}
$$

where $a=a_{n}$ is the leading coefficient; the roots w_{i} are all different from each other; and the multiplicities m_{i} are positive integers, whose sum is n. This is a theoretical existence statement, which basically says that f has n zeros once those are counted with the proper multiplicities. If we know w is a root, we can actually compute its multiplicity without writing the polynomial in the form described above:

Lemma 14.1. The multiplicity of a root w is the smallest m such that the m-th derivative of f at w is nonzero.

Example 14.2. Take $f(z)=z+3 z^{2}-3 z^{3}+z^{4}$, which satisfies $f(1)=0$. We compute

$$
\begin{array}{ll}
f^{\prime}(z)=-1+6 z-9 z^{2}+4 z^{3}, & f^{\prime}(1)=0 \\
f^{\prime \prime}(z)=6-18 z+12 z^{2}, & f^{\prime \prime}(1)=0 \tag{14.7}\\
f^{\prime \prime \prime}(z)=-18+24 z, & f^{\prime \prime \prime}(1)=6 \neq 0
\end{array}
$$

so the multiplicity at 1 is 3 .

From now on, we write $\operatorname{mult}(f, w)$ for the multiplicity of f at w (if w is not a root, one can set that multiplicity to 0).
(14c) The winding number formula. Applying the same idea as in the previous lecture, we look at the image of a circle of radius $r>0$ under f, which is the loop (with $T=2 \pi$)

$$
\begin{equation*}
d(t)=f\left(r e^{i t}\right)=f(r \cos (t)+r i \sin (t)) \tag{14.8}
\end{equation*}
$$

Suppose that f has is no root on the circle of radius r around the origin, so that the winding number wind $(d, 0)$ is defined. Then:

Theorem 14.3. For a loop 14.8,

$$
\begin{equation*}
\operatorname{wind}(d, 0)=\sum_{\substack{|w|<r \\ f(w)=0}} \operatorname{mult}(f, w), \tag{14.9}
\end{equation*}
$$

where the sum is over all roots of f lying inside the circle of radius r.

In particular, the winding number is always nonnegative; and it is >0 if and only if there is a solution of $f(w)=0$ inside the circle. This two-way implication is part of the special magic of the class of holomorphic functions, of which polynomials are the simplest examples.

EXAmple 14.4. Take $f(z)=z^{5}-z^{3}-\frac{1}{2}$. The loop $d(t)=f\left(e^{i t}\right)=e^{5 i t}-e^{3 i t}-\frac{1}{2}$ looks like this:

From that, one reads off the winding number around the origin, $\operatorname{wind}(d, 0)=3$ (the picture doesn't tell you which way the loop goes; but the other direction gives a winding number of -3 , which is impossible). This means that we have three possibilities: either there are three solutions of $f(p)=0$ with $|p|<1$, each having multiplicity 1 ; or two solutions, with multiplicities 1,2 ; or a single solution, with multiplicity 3 (in fact, the first is the case, but you can't tell that just from our computation).

Example 14.5. Take $f(z)=(z+i)(z-i)(z+1)(z-1)(z-1 / 4)$. There is one root with $|p|=1 / 4$, and four roots with $|p|=1$. All roots have multiplicity 1. Consequently, the winding
number $\operatorname{wind}(d, 0)$ remains zero for $r<1 / 4$, and then jumps to 1 . The jump happens in a relatively simple way, by d moving across the origin:

$r=0.23$

$r=0.25$

$r=0.27$

The winding number remains at that value for $1 / 4<r<1$, and then jumps to 5 when crossing $r=1$. At that value, four parts of the loop d all pass through the origin simultaneously:

$r=0.98$

$r=1$

$r=1.03$

Example 14.6. Take $f(z)=\left(z-\frac{1}{2}\right)^{3}(z-i)$. This has a root of multiplicity 3 at $1 / 2$, and a root of multiplicity 1 at i. Correspondingly, we expect the winding number to be 0 for $r<1 / 2$, then 3 for $r \in(1 / 2,1)$, and finally 4 for $r>1$. The jump from 0 to 3 comes with a sudden curling behaviour:

(14d) Other values. We have focused on the equation $p(z)=0$, but simply by subtracting a constant from p, one can apply the result to equations $p(z)=u$ for an arbitrary complex number u.

Corollary 14.7. Take $d(t)=p\left(r e^{i t}\right)$ as before. For every u where it is defined, the winding number $\operatorname{wind}(p, u)$ is nonnegative; and it is >0 if and only if there is a solution of $p(z)=u$ with z inside the circle of radius r.

Example 14.8. Take the leftmost picture from Example 14.5, with $r=0.98$. We have not drawn that, but the motion of the loop is anticlockwise (meaning, to the left at its topmost point). As a consequence, one can check that the winding numbers are positive for all regions except the outermost infinite region. It follows that for any u lying in those regions, the equation $p(z)=u$ has a solution with $|z|<0.98$.

Corollary 14.9. Take $d_{1}=p\left(r_{1} e^{i t}\right), d_{2}=p\left(r_{2} e^{i t}\right)$, for some $r_{2}>r_{1}>0$. Then, for every complex number u where both winding numbers are defined, we have

$$
\begin{equation*}
\operatorname{wind}\left(d_{2}, u\right) \geq \operatorname{wind}\left(d_{1}, u\right) \tag{14.14}
\end{equation*}
$$

In other words, as the radius increases, the winding number of our loops around any point can only go up or stay the same; it can never go down.
(14e) Proof. The proof of the theorem is, as usual for loops, by a deformation argument. We write our polynomial as a product, but separating the roots that lie inside and outside the circle of radius r :

$$
\begin{equation*}
f(z)=\left(\prod_{\left|w_{i}\right|<r}\left(z-w_{i}\right)^{m_{i}}\right)\left(\prod_{\left|w_{i}\right|>r}\right)\left(z-w_{i}\right)^{m_{i}} \tag{14.15}
\end{equation*}
$$

Now we introduce a parameter $s \in[0,1]$ which changes it like this:

$$
\begin{equation*}
f_{s}(z)=\left(\prod_{\left|w_{i}\right|<r}\left(z-s w_{i}\right)^{m_{i}}\right)\left(\prod_{\left|w_{i}\right|>r}\left(s z-w_{i}\right)\right) . \tag{14.16}
\end{equation*}
$$

If $\left|w_{i}\right|<r$ is a root of f, then $s\left|w_{i}\right|$ is a root of f_{s}. In the second instance, if $\left|w_{i}\right|>r$ is a root of f, then $\left|w_{i}\right| / s$ is a root of f_{s} (or for $s=0$, there is no corresponding root). In words, the roots lying inside the circle of radius r move inwards as s becomes smaller, and those lying outside the circle move to infinity. At no time s does f_{s} actually have a root on the circle. Therefore, if we define

$$
\begin{equation*}
d_{s}(t)=f_{s}\left(r e^{i t}\right) \tag{14.17}
\end{equation*}
$$

then $\operatorname{wind}\left(d_{s}, 0\right)$ remains the same for all s. For $s=1$ we have $f_{1}=f$, so $d_{1}=d$ is the loop associated to the original polynomial. Now let's see what we get for $s=0$:

$$
\begin{equation*}
f_{0}(z)=\left(\prod_{\left|w_{i}\right|<r} z^{m_{i}}\right)\left(\prod_{\left|w_{i}\right|>r}\left(-w_{i}\right)^{m_{i}}\right)=z^{m} a \tag{14.18}
\end{equation*}
$$

where $m=\sum_{\left|w_{i}\right|<r} m_{i}$, and $a=\prod_{\left|w_{i}\right|>r}\left(-w_{i}\right)^{m_{i}}$ is a nonzero constant. The associated loop is $d_{0}(t)=e^{i m t} a$, which goes m times around the circle of radius $|c|$. Therefore, $\operatorname{wind}\left(d_{0}, 0\right)=m$. The same is therefore true of $\operatorname{wind}(d, 0)=\operatorname{wind}\left(d_{1}, 0\right)$. Looking at the definition of m, that's exactly what the theorem says!

MIT OpenCourseWare
https://ocw.mit.edu

18.900 Geometry and Topology in the Plane

Spring 2023

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

