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19. Introduction to algebraic curves

In this chapter we will discuss algebraic curves in the plane, which are described by a polynomial

equation in two variables. To familiarize you with this kind of object, this lecture is dedicated to

fairly basic example constructions:

• We look at algebraic curves which are of the very special form f(x) = g(y), and how

one can draw roughly what such a curve looks like.

• We show one can construct algebraic curves passing through a given finite collection of

points in the plane (interpolation).

• We look at other ways in which algebraic curves can arise, through rational or trigono-

metric parametrizations.

(19a) Definition and first examples. An algebraic curve is the subset of the plane formed

by the solutions (x, y) of a non-constant polynomial equation in two variables,

(19.1) C = {(x, y) ∈ R2 : f(x, y) = 0}.

To make our language more precise, let’s say that xiyj is a monomial of degree i + j. Then, a

polynomial of degree ≤ d is a sum of monomials

(19.2) f(x, y) =
∑

i≥0,j≥0
i+j≤d

aijx
iyj ,

with real coefficients aij ∈ R. If at least one of the top degree terms aijx
iyj , i+j = d, is nonzero,

we say that the polynomial has degree d. This notion of degree behaves in the way familiar from a

single variable: if you multiply polynomials, the degrees add. An algebraic curve of degree d > 0

is the zero-set of a polynomial of that degree. For instance, a degree 1 polynomial is just a linear

function f(x, y) = a00 + a10x + a01y, with (a10, a01) ̸= (0, 0); and hence, a degree 1 algebraic

curve is just a straight line. We call a degree 2 algebraic curve a conic.

Fact 19.1. The conics are of the following kinds:

• ellipses, including circles;

• parabolae;

• hyperbolae; these three cases together are the classical conics.

• Unions of two lines. This happens when f(x, y) is the product of two degree 1 poly-

nomials. The two lines can intersect (for instance, xy = 0), or they can be parallel

(x(x − 1) = 0), or they can even be the same (x2 = 0; in situations like this, the

terminology “curve of degree d” becomes a little awkward).

• Sets consisting of one point in the plane (x2 + y2 = 0).

• The empty set (x2 + y2 = −1).

As we saw above, the union of two lines is an algebraic curve. More generally,

Fact 19.2. If C1 and C2 are algebraic curves, then so is C = C1 ∪ C2. To see that, write

Ci = {fi(x, y) = 0}, and then C = {f(x, y) = 0}, where f(x, y) = f1(x, y)f2(x, y).
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We also saw that a single point is an algebraic curve. This is also an instance of a wider

observation:

Fact 19.3. If C1 and C2 are algebraic curves, then so is C = C1 ∩ C2. To see that, write

Ci = {fi(x, y) = 0}, and then C = {f(x, y) = 0}, where f(x, y) = f1(x, y)
2 + f2(x, y)

2.

We’ve defined an algebraic curve just as a subset C ⊂ R2 which can be described by an algebraic

equation, but different equations can give the same curve. The unfortunate outcome of this is

that the degree of C is in general ambiguous. The line {x = 0} is also the conic {x2 = 0}, and
indeed the degree n curve {xn = 0} for any n.

The following is maybe the simplest way to construct examples of higher degree curves whose

structure you can understand. Look at

(19.3) C = {p(x) = y2}.

This means that y = ±
√
p(x), so for every x, we have 0, 1 or 2 solutions of y, depending on the

sign of p(x).

Example 19.4. Take C = {x3 − x = y2}. This satisfies

(19.4) p(x) = x3 − x = (x− 1)(x+ 1)x



negative x < −1,
positive −1 < x < 0,

negative 0 < x < 1,

positive x > 1,

zero x = −1, 0, 1.

So, we get two solutions of y2 = p(x) for every x ∈ (−1, 0), and also for every x > 1. Here’s

what C actually looks like:

(19.5)

-2 -1 0 1 2

-2

-1

0

1

2

(19b) Interpolation. Everyone knows that there’s a line through any two given points. The

result one degree higher is this:

Lemma 19.5. For any 5 points in the plane, there is a conic which goes through all those points.

(There may be more than one, depending on the positions of the points, but there is at least one.

It may not be a classical conic, though.)

To prove the result, write qi = (xi, yi), i = 1, . . . , 5. Let’s look at a general conic f(x, y) = 0,

(19.6) f(x, y) = a20x
2 + a11xy + a02y

2 + a10x+ a01y + a00.



150 VI. ALGEBRAIC CURVES

The condition for that conic to go through our five points are

(19.7)

a20x
2
1 + a11x1y1 + a02y

2
1 + a10x1 + a01y1 + a00 = 0,

a20x
2
2 + a11x2y2 + a02y

2
2 + a10x2 + a01y2 + a00 = 0,

a20x
2
3 + a11x3y3 + a02y

2
3 + a10x3 + a01y3 + a00 = 0,

a20x
2
4 + a11x4y4 + a02y

2
4 + a10x4 + a01y4 + a00 = 0,

a20x
2
5 + a11x5y5 + a02y

2
5 + a10x5 + a01y5 + a00 = 0.

These are 5 linear equations for the 6 unknown coefficients of the conic. Hence, there must be a

solution where not all of the aij are zero. (In principle, the resulting f(x, y) could have degree 1,

but then one could take the product with an arbitrary linear term to get the degree back up to

2). The same idea actually works in any degree:

Theorem 19.6. Take some d ≥ 1, and choose d(d + 3)/2 points in the plane. Then there is an

algebraic curve of degree d which passes through all of them.

(19c) Parametrizations. We are used to two ways of describing curves, one by equations and

the other by parametrizations. Algebraic curves are by definition given by polynomial equations,

but we also have the following:

Theorem 19.7. Any two rational functions x(t) and y(t) parametrize part of an algebraic curve.

Example 19.8. One can find a rational parametrization of the circle x2+y2 = 1 (minus a point)

as follows. Draw a line from a point (t,−1) to (0, 1). This line intersects the circle at one point

other than (0, 1), and one can solve for the coordinates of that point:

(19.8)

(0, 1)

(x(t), y(t)) =
(

4t
t2+4 ,

t2−4
t2+4

)

(t,−1)

To understand why the theorem holds, let’s suppose that x(t) and y(t) are polynomials of degree

≤ 3. We claim that then, they parametrize part of an algebraic curve of degree ≤ 4. Look at the

monomials that can occur,

(19.9)
1, x(t), y(t), x(t)2, x(t)y(t), y(t)2, x(t)3, x(t)2y(t), x(t)y(t)2, y(t)3,

x(t)4, x(t)3y(t), x(t)2y(t)2, x(t)y(t)3, y(t)4.

Each of these is a polynomial of degree ≤ 3 · 4 = 12 in t. Such a polynomial has 13 coefficients,

so we can think of it as a vector in R13. There are 15 such polynomials/vectors, so there must be

a linear relation between them (15 > 13); and that translates into a polynomial relation between

x(t) and y(t) of degree ≤ 4. The same argument shows that if x(t) and y(t) are polynomials of

degree ≤ d, for some d ≥ 2, then they trace out part of an algebraic curve of degree ≤ 2d − 2.

The general case of rational functions is similar but more complicated, since one has to take the

degrees of numerator and denominator into account.
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A trigonometric polynomial of degree ≤ d is an expression

(19.10) p(θ) = a+
d∑
k=1

bk cos(kθ) +
d∑
k=1

ck sin(kθ),

with constants a, b1, . . . , bd, c1, . . . , cd. A trigonometric rational function is then defined as a

function that’s a quotient of two trigonometric polynomials.

Theorem 19.9. Any two trigonometric rational functions x(θ) and y(θ) parametrize part of an

algebraic curve.

One can prove this as before, by finding linear relations between the x(θ)iy(θ)j (by the angle

addition formulae, these are all polynomials in cos(θ) and sin(θ)). There is also a more sneaky

approach, using the rational parametrization (x(t), y(t)) of the circle from (19.8): substituting

(cos(θ), sin(θ)) = (x(t), y(t)) turns a parametrization by trigonometric rational functions into

one (much more complicated) by ordinary rational functions. So, the theorem can actually be

reduced to the previous one.

Any kind of converse to the theorems above is false: “most” algebraic curves of degree > 2

can’t be parametrized by rational (or trigonometric rational) functions. In other words, any

parametrization of such a curve must be by functions which are more complicated.
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