
164 VI. ALGEBRAIC CURVES

21. Intersections of algebraic curves

The structure of an algebraic curve is constrained by its degree. In this lecture we’ll look at one

aspect of this, namely how algebraic curves can intersect each other.

• We look at some simple (but still useful) cases, like the intersection of an algebraic curve

and a line.

• Then we will state the general result, Bézout’s theorem. Later, this will turn out to be

a useful tool for studying the topology of algebraic curves.

(21a) Intersections with lines. The curve in the picture below could be algebraic, but if it is,

its degree must be at least 6. To see that, one looks at the dashed line, and applies the following

general observation:

(21.1)

Proposition 21.1. Let C be a degree d curve, and L a line. Then C intersects L in at most d

points, except in the case where L is actually a subset of C.

Namely, take C = {f(x, y) = 0}, and parametrize the line L by (x(t) = at + b, y(t) = ct + d).

Points of C that lie on the line correspond to solutions of

(21.2) f(x(t), y(t)) = f(at+ b, ct+ d) = 0,

which is a polynomial in one variable t of degree ≤ d. That polynomial could be zero, in which

case all t are solutions, and the line is contained in C. Otherwise, it is a basic fact that such a

polynomial can only have at most d roots.

Proposition 21.2. An algebraic curve of odd degree d can’t be a bounded subset of the plane (it

always goes out to infinity).

We have C = {f(x, y) = 0}, where f has degree d. Suppose first that the xd-coefficient of f(x, y)

is nonzero. Then, if we set y to be a constant, f(x, y) is a polynomial in x of degree d. By

another elementary fact, a polynomial of odd degree always has a root. This means that our

curve intersects any horizontal line, and must therefore be unbounded.

Well then, what if the xd-coefficient is zero? We can work around that by changing coordinates.

Let’s look at f(x, cx+ y), where c is some constant. If f(x, y) =
∑
i+j≤d aijx

iyj , then

(21.3)

(xd-coefficient of f(x, cx+ y)) = ad,0 + ad−1,1(x
d-coefficient of xd−1(cx+ y))

+ ad−2,2(x
d-coefficient of xd−2(cx+ y)2) + · · ·

= ad,0 + ad−1,1c+ ad−2,2c
2 + · · ·+ cd.
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Since f has degree d, one of the ad−i,i must be nonzero. Therefore, the expression (21.3) is a

nonzero polynomial in c, and we can choose c so that the expression is not zero. Then, the

previous argument applies after the coordinate change from (x, y) to (x, cx+ y).

(21b) Intersection with conics. Going back to the intersection problem, we look at the next

case, that of conics.

Proposition 21.3. Let C = {f(x, y) = 0} be a degree d curve, and D a conic. Then C intersects

D in at most 2d points, with two exceptions. One exception is if D is contained in C. The second

exception is if D is the union of two different lines, and one of those lines is a subset of C.

One can prove this case-by-case by looking at the different kinds of conics. We’ll do one example

of each case:

• (Parabola) Suppose that D = {x2 = y}, which we can parametrize by (x(t), y(t)) =

(t, t2). Intersection points are solutions of f(t, t2) = 0, which is a polynomial in t of

degree ≤ 2d, therefore has at most 2d roots.

• (Hyperbola) Suppose that D = {xy = 1}. If we set (x(t), y(t)) = (t, t−1), then f(t, t−1)

is no longer a polynomial in t. Instead, it contains powers of t from t−d to td. But if

we multiply by td, we get a polynomial of degree ≤ 2d, to which the previous argument

applies.

• (Ellipse) As an example take the circle D = {x2 + y2 = 1}, for which we have the

parametrization

(21.4) x(t) =
4t

t2 + 4
, y(t) =

t2 − 4

t2 + 4
.

If we insert that into the equation for C = {f(x, y) = 0}, we get a sum of terms

(21.5) x(t)iy(t)j =
(4t)i(t2 − 4)j

(t2 + 4)i+j
=

(4t)i(t2 − 4)j(t2 + 4)d−i−j

(t2 + 4)d
.

Therefore, (t2 + 4)df(x(t), y(t)) is a polynomial of degree ≤ 2d in t. (This argument

doesn’t quite work if (0, 1) lies on C, because our parametrization leaves out that point;

but we can avoid that by rotating the coordinate plane before parametrizing.)

• (Other cases) D could consist of two lines, or one line, or a point, or is empty. All those

are easy.

(21c) The general result. There is a theorem about intersections of algebraic curves of any

degree, which includes all the cases discussed above. This is a much more difficult result, because

curves of degree > 2 don’t generally have rational parametrizations. As an introductory step,

let’s remind ourselves that if a polynomial can be written as a product of others,

(21.6) f(x, y) = g(x, y)h(x, y),

then the curve C = {f(x, y) = 0} is the union of D = {g(x, y) = 0} and E = {h(x, y) = 0}:

(21.7) C = D ∪ E.
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Example 21.4. Suppose that f has degree 3. Excluding the silly cases where g or h are constants,

the way that (21.6) happens is that one of the factors (g, h) has degree 1 (and the other has degree

2). Then C contains a line. For all other degree 3 curves, f can’t be factored into lower degree

polynomials. For instance, f(x, y) = x3 + x− y2 can’t be factored, since a quick look at the graph

shows us that {f(x, y) = 0} certainly doesn’t contain a line.

The general intersection problem is that we have two curves

(21.8) C1 = {f1(x, y) = 0}, C2 = {f2(x, y) = 0}

of degrees d1 and d2, respectively. The problem, as we already saw in the situations above, is

that that there are exceptions: it is possible for C1 ∩C2 to be infinite, when the two curves have

a part in common. Let’s see how that could come about algebraically: suppose that f1 and f2
have a common factor g, which means they can be written as products of polynomials

(21.9)
f1(x, y) = g(x, y)h1(x, y),

f2(x, y) = g(x, y)h2(x, y),

Then, every point where g(x, y) = 0 belongs to both C1 and C2. In terms of sets, take D =

{g(x, y) = 0}, and E1 = {h1(x, y) = 0}, E2 = {h2(x, y) = 0}. We have

(21.10) C1 = D ∪ E1, C2 = D ∪ E2,

and therefore

(21.11) C1 ∩ C2 = D ∪ (E1 ∩ E2).

If D consists of infinitely many points, then the intersection C1 ∩ C2 is clearly infinite. Bézout’s

theorem says that this is the only exception:

Theorem 21.5. (Bézout’s theorem) Let C1 = {f1(x, y) = 0} and C2 = {f2(x, y) = 0} be algebraic
curves of degrees d1 and d2. Then, C1 intersects C2 in at most d1d2 points, except in the following

situation: (21.9) holds, where g(x, y) is such that D = {g(x, y) = 0} has infinitely many points,

and h1, h2 have no common factor (the last one is clear because we can move any common factor

to g).

In the “except” situation, one can apply Bézout’s theorem another time, to (h1, h2) (which have

no common factor) to fully describe C1 ∩ C2.

Example 21.6. Any curve of degree d intersects the curve {x3 + x − y2 = 0} in at most 3d

points. In that case, the exceptional situation is impossible, because the degree 3 polynomial can’t

be factored.

Example 21.7. Suppose that C1 and C2 both have degree 3. Then, the cases break down as

follows.

• (21.9) applies with g of degree 3. This means that h1 and h2 are constants, so f1 and

f2 are multiples of each other: C1 = C2.
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• (21.9) applies with g of degree 2. Then h1, h2 are of degree 1, and have no common

factor, so they are different lines. This means that E1 = {h1 = 0} and E2 = {h2 = 0}:
the intersection E1∩E2 is empty or a single point. In the end, C1∩C2 = D∪ (E1∩E2)

consists of a conic D (which has infinitely many points) and at most one additional

point.

• (21.9) applies with g of degree 1, so D = {g(x, y) = 0} is a line. Then h1, h2 are of

degree 2, and have no common factor. We can apply Bézout to (h1, h2), and find that

E1 ∩ E2 is at most four points. So, C1 ∩ C2 consists of a line D and at most four

additional points.

• Finally, there’s the case where the “main branch” of Bézout applies, meaning C1 ∩ C2

consists of ≤ 9 points (this is what happens most of the time).
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