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25. Tropical geometry

On the face of it, tropical geometry is a new kind of algebraic geometry, where we replace the

arithmetic operations by different and simpler ones. It is closely related to patchworking, for

which it provides a more quantitatively accurate viewpoint.

• We introduce tropical arithmetic, tropical polynomials, and tropical algebraic curves.

• We relate them to ordinary arithmetic and ordinary algebraic curves, by taking loga-

rithms with respect to large bases.

(25a) The tropical numbers. The tropical numbers are

(25.1) Rtrop = {−∞} ∪ R,

but with different addition and multiplication operations:

(25.2)
a⊕ b = max(a, b),

a⊙ b = a+ b.

Since tropical multiplication is ordinary addition, the tropical multiplicative neutral element is

the ordinary additive neutral element, meaning 0. The tropical additive neutral element is −∞.

Not all of the usual rules hold: there can’t be tropical subtraction, since it’s impossible to recover

a from knowing b and max(a, b).

One can relate tropical numbers to ordinary nonnegative real numbers as follows. Fix some s > 0,

thought of as being large. The correspondence is

(25.3)
a ∈ Rtrop −→ x = sa ∈ R≥0,

a = logs(x) ∈ Rtrop ←− x ∈ R≥0,

with the convention that s−∞ = 0 and logs(0) = −∞. This is compatible with multiplications,

(25.4) logs(s
a · sb) = a+ b = a⊙ b.

It is also approximately compatible with additions, with an error that goes to 0 as s→∞:

Lemma 25.1. For a, b ∈ Rtrop,

(25.5) a⊕ b ≤ logs(s
a + sb) ≤ a⊕ b+ 1

s|a−b| ln(s)
.

The first inequality in (25.5) follows from the fact that logs is an increasing function. For the

other one, it’s enough to look at the case a ≥ b. Using the fact that ln(1 + c) ≤ c, we then write

(25.6)

logs(s
a + sb) = logs(s

a(1 + sb−a)) = logs(s
a) + logs(1 + sb−a)

= a+
ln(1 + sb−a)

ln(s)
≤ a+ 1

sa−b ln(s)
.
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Visually, it’s eyecatching how the graph of ln(ea + eb) bends to approximate max(a, b):

(25.7)

(25b) Tropicalization of polynomials. Take a polynomial in two variables, depending on an

additional parameter s, of the form

(25.8) fs(x, y) =
∑
i+j≤d

s−wijxiyj , wij ∈ Z.

To find the tropical analogue of fs, we replace: x with a = logs(x); y with b = logs(y); the powers

s−wij with the constants logs(s
−wij ) = −wij ; and all arithmetic operations with their tropical

counterparts:

(25.9) ftrop(a, b) =
⊕
i+j≤d

(
(−wij)⊙

i terms︷ ︸︸ ︷
a⊙ · · · ⊙ a⊙

j terms︷ ︸︸ ︷
b⊙ · · · ⊙ b

)
.

In more concrete terms, this is a piecewise linear function:

(25.10) ftrop(a, b) = maxi+j≤d
{
ia+ jb− wij

}
.

Example 25.2. If fs(x, y) = 1 + x+ s−3x2y2, then ftrop(a, b) = max{0, a, 2a+ 2b− 3}.

The tropical version of fs(x, y) = 0 is ftrop(a, b) = −∞ (since −∞ is the additive unit in the

tropical numbers). However, that’s not particularly interesting in either context: fs(x, y) = 0

has no solutions with x, y > 0, and correspondingly ftrop(a, b) = −∞ has no solutions with

a, b > −∞. We therefore look at polynomials which have terms of either sign:

(25.11) fs(x, y) =
∑
i+j≤d

σijs
−wijxiyj , wij ∈ Z, σij ∈ {±1}.

To tropicalize the equation fs(x, y) = 0, we separate the polynomial into positive and negative

terms, fs(x, y) = f+s (x, y)− f−s (x, y). Then, the algebraic curve associated to fs can be written

without subtraction as Cs = {f+s (x, y) = f−s (x, y)}. Its tropicalization is accordingly

(25.12) Ctrop = {(a, b) : f+trop(a, b) = f−trop(a, b)}.

Example 25.3. Take Cs = {1 + x − y = 0} = {y = x + 1}, which in this particular case is

independent of s. In s-dependent coordinates x = sa, y = sb, we get Cs = {b = logs(s
a + 1)},
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which looks like this:

(25.13)
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Compare this with Ctrop = {b = max(a, 0)}:

(25.14)
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(25c) Tropical patchworking. Generally speaking, drawing Ctrop can be quite complicated,

as one has to figure out which of the many terms is the maximal one in f±trop(a, b) for any point

(a, b). The situation becomes simpler if we take the exponents of s to be those from our previous

discussion of patchworking,

(25.15) wij =
i(i− 1)

2
+
j(j − 1)

2
+

(i+ j)(i+ j − 1)

2
.

In this case, the computation of maxima simplifies, leaving the following contributions to Ctrop:

• for each (i, j) such that σi+1,j ̸= σi,j , we get a piece of the vertical line a = 2i+j, which

is the solution set of ai+ bj + wij = a(i+ 1) + bj + wi+1,j ;

• for each (i, j) such that σi,j+1 ̸= σi,j , we get a piece of the horizontal line b = i + 2j,

which is the solution set of ai+ bj + wij = ai+ b(j + 1) + wi,j+1;

• for each (i, j) such that σi+1,j−1 ̸= σi,j , we get a piece of the diagonal line b−a = j−i−1,
which is the solution set of ai+ bj + wij = (a+ 1)i+ (b− 1)j + wi+1,j−1.

It’s useful to look at an example. Let’s take a fairly simple one,

(25.16) fs(x, y) = 1− x− y + s−2x2 + s−1xy + s−2y2.

Here is the picture of all the lines listed above, with the actual Ctrop marked in bold:

(25.17)

We can compare it with the actual algebraic curve in log coordinates. Let’s introduce the notation

(25.18)
Logs : (R≥0)2 −→ ({−∞} ∪ R)2,
Logs(x, y) = (logs(x), logs(y)).
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Then, Logs(Cs ∩ (R≥0)2) looks like this (for s large, in this case s = 100):

(25.19)

-2 -1 0 1 2 3

-2

-1

0

1

2

3

Moreover, if we set s = t−1, then Ct is an example of patchworking according to this diagram:

(25.20)
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What this example reveals is actually part of a general pattern. Ctrop is a modified version of the

patchworking diagram; both are essentially combinatorial (stick-figure) objects, and one can go

back and forth between them, without affecting the qualitative (topological) structure. Secondly,

as one would guess from our discussion of the relation between ordinary and tropical numbers:

Theorem 25.4. In the situation of (25.15), we have that as s→∞,

(25.21) Logs(Cs ∩ (R≥0)2) −→ Ctrop.

In words, take the part of Cs where (x, y) are nonnegative, and look at it in logarithmic coordi-

nates with base s. Then, as s goes to infinity, this converges to the corresponding tropical curve.

We will leave the statement imprecise, by not explaining what notion of convergence appears

here. The important point is that tropicalization can serve as an intermediate notion between

the patchworking diagram and the actual algebraic curve, and thereby provides us with a better

understanding of patchworking itself.

Example 25.5. Take (24.5), but replacing (x, y) by (−x,−y), and setting s = t−1 as before,

which means

(25.22)

Cs =
{
1 + x+ y + s−2x2 − s−1xy + s−2y2 + s−6x3 + s−4x2y + s−4xy2 + s−6y3

+ s−12x4 − s−9x3y + s−8x2y2 − s−9xy3 + s−12y4 = 0
}
,

Ctrop =
{
max{0, a, b, 2a− 2, 2b− 2, 3a− 6, 2a+ b− 4, a+ 2b− 4, 3b− 6,

4a− 12, 2a+ 2b− 8, 4b− 12} = max{a+ b− 1, 3a+ b− 9, a+ 3b− 9}
}
.

We draw the patchworking diagram, which is a rotated version of the bottom left quadrant in

(24.8), alongside Ctrop and Logs(Cs) (for s = 1000):

(25.23)
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