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30. Betti numbers (continued)

Picking up where we left off,

• we complete our discussion of Betti numbers of planar complexes.

• The definition of Betti numbers works for complexes in a more abstract sense, not drawn

in the plane. This gives us examples with more interesting (and harder to understand)

behaviour.

(30a) Betti numbers of planar complexes, revisited. Recall the definition of Betti numbers

of a planar complex K, in terms of the ranks of boundary operators, and how we analyzed that

using linear algebra:

(30.1)

b0(K) = n0 − rank(D1) = nullity(Dt
1),

b1(K) = n1 − rank(D1)− rank(D2) = nullity(D1)− rank(D2),

b2(K) = n2 − rank(D2) = nullity(D2).

Example 30.1. Take the example from the last lecture, but remove one triangle, so n0 = 5,

n1 = 7, n2 = 2:

(30.2)
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We have

(30.3) D2 =



1 0

−1 0
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0 0

0 1


with rank(D2) = 2, which means b2 = 0. As we saw last time, b0 is the number of components

not connected to each other, so b0 = 1. Finally, the Euler characteristic is

(30.4) χ = b0 − b1 + b2 = n0 − n1 − n2 = 5− 7 + 2 = 0

from which we conclude that b1 = 1 (one could of course also compute b1 directly, using rank(D1) =

4).

Theorem 30.2. For a planar complex K, we always have b2(K) = 0.

What we want to show is that D2w = 0 has only the trivial solution w = 0. When we spell it

out, this is a linear system, with one variable wT for each triangle, and one equation for each
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edge e. By definition of D2, the equations have the form

(30.5)
∑

triangles T
adjacent to e

±wT = 0.

Hence, if T has an edge not shared by any other triangle, then wT = 0; and if the edge e is shared

by exactly two triangles T1 and T2, then wT1
= ±wT2

. Starting with any triangle T , one can

always pass through adjacent triangles (ones sharing an edge) until one reaches a triangle that

has an “outside” edge, not shared with any other triangle. By going through all the equations,

it follows that the coefficient of wT the original triangle had to be zero.

Definition 30.3. A hole of a planar complex K is a bounded component of the complement

R2 \K. Here, components means pieces not connected to each other; and bounded means that we

exclude the infinite outside component.

Theorem 30.4. For a planar complex K, the Euler characteristic is

(30.6) χ = (number of components of K)− (number of holes of K).

The main job here would be to prove the theorem about planar graphs (complexes without

triangles). Once one has that, then filling in a triangle clearly raises χ by one and also destroys

a hole, hence increases both sides of the equation by the same amount. We don’t want to get too

far into planar graphs, hence won’t explain this further.

Corollary 30.5. For every planar complex, b1 is the number of holes.

This follows from the previous results: by Theorem 30.2, b1 = χ − b0 − b2 = χ − b0. We also

know (Theorem 29.7) that b0 is the number of components; so by Theorem 30.4, b1 must be the

number of holes.

(30b) Abstract complexes. The definition of Betti numbers uses only data encoded into D1

and D2. Those data describe the adjacencies (how points, edges, and triangles fit together),

but not how the complex lies in the plane. For instance, here are two complexes with the same

adjacencies:

(30.7)
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Maybe it would be better to say these are two pictures of the same “abstract” complex, but

realized differently in the plane. In fact, Betti number can be defined in such an abstract situation,

which is where they reach their full power.

Definition 30.6. An abstract complex is given by combinatorial data, as follows:

• integers n0, n1, n2 ≥ 0.

• Pairs (i1, j1), . . . , (in1
, jn1

), where 1 ≤ ik < jk ≤ n0, and where no two pairs may be the

same.
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• Triples (p1, q1, r1), . . . , (pn2
, qn2

, rn2
), where 1 ≤ pk < qk < rk ≤ n0, and where no two

triples are the same. Moreover, whenever if a triple (p, q, r) appears, the pairs (p, q),

(p, r), (q, r) must be on the previous list.

We imagine these abstract points, edges and triangles glued together, all floating in your imagina-

tion (not in ordinary three-dimensional space: many abstract complexes can’t be represented in

three dimensions). The definition of Euler characteristic, boundary operator, and Betti numbers,

go through as before. Also, the description of b0 in terms of components still works for abstract

complexes. In contrast, our description of b1 makes no sense, since we don’t have a complement

of the complex. And finally, b2 can be nonzero, as shown by the following example:

Example 30.7. Take a tetrahedron. It has 4 vertices and all possible edges and triangles,

(30.8) (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4) and (1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4).

The Euler characteristic is χ = n0 − n1 + n2 = 4− 6 + 4 = 2. The boundary operators are

(30.9) D1 =


−1 −1 −1 0 0 0

1 0 0 −1 −1 0

0 1 0 1 0 −1
0 0 1 0 1 1

 , D2 =



1 1 0 0

−1 0 1 0

0 −1 −1 0

1 0 0 1

0 1 0 −1
0 0 1 1


.

As usual, the rows of D1 add up to zero, giving one linear relation; and the first three are linearly

independent, so rank(D1) = 3. The alternating sum of the columns of D2 (first minus second plus

third minus fourth) is zero; and the first three columns are linearly independent, so rank(D2) = 3.

We get

(30.10) b0 = 4− 3 = 1, b1 = 6− 3− 3 = 0, b2 = 4− 3 = 1.

(30c) The topology of data, revisited. Suppose we have points numbered 1, . . . , n0, and

some notion of distance dist(i, j) between two points. They don’t need to lie in the plane: they

could be in a higher-dimensional space, or even in some more abstract context, and you can

define distance in whichever way you want, subject to some commonsense constraints.

Fix some scale σ > 0. To our points, add edges (i, j) for each i < j such that dist(i, j) < δ. In

the same way, add a triangle (p, q, r) for each p < q < r such that all three points are at distance

< σ from each other. The outcome is an abstract complex called the Vietoris-Rips complex of our

point set, at scale σ. The Betti number b0 can be thought of as a simple measure of clustering:

we group our points so that any two with distance < σ lie in the same group, and then b0 is the

number of groups. b1 is a more interesting notion: it expresses insights about the structure of

our point set which are not immediately obvious. (Finally, b2 does not contain any meaningful

information, due to the limitations of our setup).
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Example 30.8. Take these sixteen 3× 3 pixel images:

(30.11)
1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

These will be the points of our abstract complex! We define the distance between two images to

be the number of pixels whose differ. For instance, the distance between the 1st and 13th image

is the maximal possible value, 9. Take σ = 3.5, and draw the edges of the Vietoris-Rips complex:

(30.12)

1 2 3 4 5 6 7 8

910 11 12 13 14 15 16

1

9

When drawing this in the plane, you’ll see spurious intersections between the edges, which you

are supposed to ignore. Moreover, to make the picture less messy, we have drawn two copies of

the 1 and 9 points, but those should be thought of as being the same. To form the Vietoris-Rips

complex, we should fill triangles wherever we can (we have indicated one triangle in the picture;

when drawn in the plane, the triangles will overlap, hence we won’t try drawing all of them).

Altogether, we have n0 = 16, n1 = 40, n2 = 32. Clearly, the whole complex is connected, so

b0 = 1. Rather than writing down D2, I will give you a free piece of information, namely that

b2 = 8. Because of the Euler characteristic, this means that

(30.13) b1 = 1.

Intuitively, this is in agreement with imagining (30.11) as (two slightly different versions, one in

each row, of) an image being rotated once, creating a “loop”.
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