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31. Surfaces

We focus on a very special class of abstract complexes, namely combinatorial surfaces.

• Orientability is a key distinction between such surfaces. We will look at examples of

orientable and non-orientable surfaces.

• We study the implications of orientability for Betti numbers.

(31a) Combinatorial surfaces. A combinatorial surface is an abstract complex, such that:

• Every edge appears on the boundary of exactly two triangles.

• Take any vertex, and look at the edges and triangles that have our chosen vertex lying

on them. Then, the outcome looks like one of these (with the chosen vertex marked in

white):

(31.1) · · ·

This means that the adjacent triangles together look like a convex polygon, triangulated

by connecting an interior point to all its vertices.

Definition 31.1. Suppose that for each triangle, we choose one of the two possible ways of going

around its boundary, subject to this constraint: for any given edge, the choices for the two adjacent

triangles yield opposite ways of going along that edge. This is called an orientation of the surface.

It’s not always possible: a surface which allows it is called orientable.

(31b) Examples. We already saw one abstract complex, namely the tetrahedron, which is

actually a combinatorial surface. The same holds for the octahedron, icosahedron, and other (less

symmetric) convex polyhedra with triangular faces: they are all surfaces, and can be thought of

as combinatorial versions of the two-dimensional sphere.

Example 31.2. The tetrahedron is orientable (and the same holds for the other combinatorial

spheres). This is easiest to see by drawing the triangles one-by-one, and then picking a way to

go around the boundary of each, so that the edge conditions are satisfied:

(31.2)
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For instance, in the first triangle, we go around the boundary by moving from 1 to 2; whereas in

the second triangle, we move from 2 to 1.
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Example 31.3. The following picture,

(31.3)
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properly understood, is a combinatorial surface (a torus). To represent it in the plane, we have

drawn several copies of the vertices, and that also holds for the edges: the (1, 4) edges on the left

and right side are the same. If we cut out the picture and glue those two sides together, we get

a ring (annulus), but note that the top and bottom sides should also be thought of as being glued

together. We have n0 = 7, n1 = 21, n2 = 14, hence χ = 0. The torus is orientable (remember,

you have to check that the orientation condition also holds at the edges that have been drawn

twice):

(31.4)

Example 31.4. Here is another picture of the same kind as the previous one. Note that on

the boundary of our picture, every point and every edge is identified with its counterpart on the

opposite side. One can think of it as the top half of an icosahedron, where the boundary is glued

to itself with a 180 degree twist. In fact, it is a combinatorial version of the projective plane.

(31.5)
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We have n0 = 6, n1 = 15, n2 = 10, which means that χ = 1. The projective plane is non-

orientable. To see this, it’s enough to start with one triangle and gradually try to extend orien-

tations to the neighbouring ones. The outcome is a contradiction:

(31.6)
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both edges are traversed in the
same direction (from 5 to 4)

(31c) Orientability and its consequences. One reason why orientability is important is that

it has significant implications for the Betti numbers.
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Proposition 31.5. Take a combinatorial surface which is connected (meaning that it’s not di-

vided into several mutually disconnected parts; equivalently, b0 = 1). Then b2 = 1 if the surface

is orientable, and b2 = 0 otherwise.

Example 31.6. For the torus from Example 31.3, we now know that b2 = 1, and of course b0 = 1.

By the Euler characteristic computation, we must have b1 = 2.

Example 31.7. For the projective plane from Example 31.4, we now know that b2 = 0, and also

b0 = 1, hence b1 = 0.

The proof of the Proposition is based on b2 = nullity(D2), and an argument similar to that which

showed b2 = 0 for planar complexes. Suppose that we have oriented our surface, and take one of

the triangles (p, q, r), for 1 ≤ p < q < r ≤ n0. Assign to our triangle a number ±1, like this. If

the orientation tells us to go around the triangle from the p-th point to the q-th point to the r-th

point, we take +1; and if the opposite is true, take −1. The condition on the orientation means

that this collection of numbers is a solution to D2w = 0, so its existence proves that b2 > 0. The

rest of the argument (showing that any other solution is a multiple of this one; and the converse

direction, namely that existence of a solution implies orientability) is similar, and we won’t go

through it here.

Proposition 31.8. The Euler characteristic of an orientable surface is always even.

Taking those two Propositions together, we also see this:

Corollary 31.9. For an orientable surface, b1 is even.

There is an elementary combinatorial proof of Proposition 31.8. Like many elegant arguments,

it is also mystifying in a what-did-we-just-do way. Moreover, it relies on the notion of sign of a

permutation, which we’ve not used before; so, you have my permission to skip it if you want!

Take a surface which has been oriented. Define a side to be an edge together with the choice of

one of the two adjacent triangles. Let’s call the set of sides Σ (it is of size 2n1). We look at three

ways of permuting the sides:

• The opposite map o : Σ → Σ, which keeps the edge but passes from one adjacent

triangle to the other. In other words, for each edge, it swaps out the two possible sides.

As a consequence, sign(o) = (−1)n1 .

• The successor map s : Σ → Σ uses the orientation, to go from the given side to the

next one for the same triangle. Clearly, if we do it three times, we get back to the

original side, meaning that s3 is the trivial (identity) permutation. This shows that

sign(s)3 = sign(s3) = 1, and therefore sign(s) = 1.

• The rotator map r : Σ → Σ is a little more complicated. Given a side, move forward

(using the orientation of the triangle) along the edge until one hits a vertex. We then
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pass to the next triangle adjacent to that vertex, again using the orientation:

(31.7)
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Here, we’ve indicated a side just by drawing a dot in the triangle, lying near the desired

edge. sign(r) is the number of vertices of our surface which have even valence (have an

even number of edges adjacent to them); to see that, one needs to look at how each side

cycles if we repeat r.

One observes (proof-by-picture) that these three permutations are related, one being the compo-

sition of the other two:

(31.8) o = s ◦ r
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As a consequence, sign(o) = sign(s)sign(r) = sign(r). In words, the number of edges is congruent

mod 2 to the number of even-valence vertices. At this point, we need two more easy combinatorial

facts (the first is true for any graph, and the second for any surface):

• the number of vertices of odd valence is even;

• the number of triangles is even.

The previous argument, and the first fact, combine to show that the number of edges is congruent

mod 2 to the number of all vertices. Together with the second fact, we see that the number of

edges is congruent mod 2 to the number of vertices plus the number of triangles. Which is exactly

what Proposition 31.8 said!

(31d) Summary. Since we have talked about Betti numbers in various degrees of generality, it

makes sense to summarize we know about their behaviour and geometric meaning (for surfaces

we have assumed connectedness, to make the statements simpler; of course, in general a surface

doesn’t have to be connected).

planar complex abstract complex connected connected

orientable non-orientable

surface surface

b0 components components 1 1

b1 holes ? even ?

b2 0 ? 1 0
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