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33. Combinatorial winding numbers and the boundary operators

In the previous lecture, we introduced cuts and the resulting winding numbers. We now generalize

that notion a bit, and relate it to boundary operators.

• To each loop one can associate a vector, which counts how many times each edge in the

complex appears in it (with signs).

• By taking suitable scalar products, one can define general combinatorial winding num-

bers, which are homotopy invariants. This construction will also explain the geometric

meaning of the first Betti number of a complex.

(33a) From loops to vectors. Let K be an abstract complex. Let’s introduce some notation.

If (i, j) is an edge, which by definition means 1 ≤ i < j ≤ n0, we write e(i,j) for the corresponding
unit (standard basis) vector in Rn1 (recall n1 is the number of edges, and we usually order those

edges lexicographically). We also find it convenient to write e(j,i) = −e(i,j). To any combinatorial

loop l = (a0, . . . , am) one can associate a vector

(33.1) vl =
m∑
i=1

e(ai−1,ai) ∈ Rn1 .

In words: if ai−1 < ai, we take the unit vector for the edge (ai−1, ai); if ai−1 > ai, take minus

the unit vector for the edge (ai, ai−1); and add up all those vectors to get vl. A constant loop

l gives rise to the vector vl = 0, since there are no contributions at all. The same is true for

loops l = (a, b, a), since one gets two terms which exactly cancel each other. It is important

to remember that vl only sees which edges are part of l, not the order in which they occur.

Therefore, it doesn’t have all the information about the loop,

Example 33.1. Take the graph

(33.2)

1

2

3

with edges (1, 2), (1, 3), (2, 3). The loop l = (1, 2, 3, 1) consists of the edges (1, 2), (2, 3), and the

reverse of (1, 3). Therefore, vl = (1,−1, 1).

Example 33.2. Take two tetrahedra, stick them together along one triangle, and then forget that

triangle. The outcome is this surface (n0 = 5, n1 = 9, and n2 = 6 including two triangles that

are “hidden” at the back the picture):

(33.3)
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In the loop l = (2, 3, 4, 2, 3, 4, 2), each of the three edges (2, 3), (2, 4), (3, 4) appears twice, but the

edge (2, 4) appears in reverse order. Therefore,

(33.4) vl = 2e(2,3) + 2e(3,4) + 2e(4,2) = 2e(2,3) + 2e(3,4) − 2e(2,4) = (0, 0, 0, 2,−2, 0, 2, 0, 0) ∈ Rn1 .

In the rightmost expression, we have followed our usual convention of listing the edges in lexico-

graphic order: (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5).

Lemma 33.3. The vector vl always satisfies D1vl = 0.

For that, it’s enough to remember that by definition of boundary operators, De(i,j) ∈ Rn0 is the

j-th unit vector minus the i-th unit vector. Basically, this the difference between the endpoints

of the edge (i, j). The terms in D1vl coming from subsequent edges will partly cancel, since each

edge ends where the following one starts; and because we have a loop that comes back to its

starting point, they will finally cancel altogether.

Theorem 33.4. Suppose that l0 and l1 are homotopic. Then vl0 − vl1 = D2x for some x ∈ Rn2 .

To prove that, we have to investigate what happens to vl under the moves that define the notion

of homotopy. If we change the starting point, vl doesn’t change at all, since we still have the

same edges, just in different order. And if insert or delete a zigzag (. . . , a, b, a, . . . ), we add or

remove two contributions to vl, but those contributions are the same basis vector with opposite

signs, so again vl remains the same.

The interesting part is passing over a triangle: a single move passes from l0 = (. . . , a, b, c, . . . ) to

l1 = (. . . , a, c, . . . ). This means that

(33.5) vl0 − vl1 = e(a,c) − e(a,b) − e(b,c).

The notation here hides some sign issues, but irrespectively, the right hand is, up to an overall

sign, D2 of the unit vector in Rn2 associated to the triangle with vertices {a, b, c}. A general

homotopy involves several such moves, but one can add the resulting vectors in Rn2 to get the

desired x.

(33b) Winding numbers. We want to turn the vectors vl into a practical tool for distinguishing

non-homotopic loops. For that purpose, it’s important to remember the fact that D2D1 = 0.

Corollary 33.5. Fix some c ∈ Rn1 such that Dt
2c = 0. Then, the number c · vl ∈ R is a

homotopy invariant, which means it remains the same if (keeping c the same, of course) we

change l to a homotopic loop.

We call this the combinatorial winding number of l with respect to c, and write it as

(33.6) windc(l) = c · vl.

The proof is really easy. Suppose that l0 and l1 are homotopic. Then

(33.7) vl1 − vl0 = D2x =⇒ Ic(l1)− Ic(l0) = c · (vl1 − vl0) = c ·D2x = Dt
2c · x = 0.
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Concretely, a vector c has one coefficient for every edge, and Dt
2c = 0 consists of one equation

for every triangle. If (p, q, r) is a triangle, which always means p < q < r, then the equation is:

(33.8) the (p, q)-coefficient of c plus the (q, r)-coefficient of c equals the (p, r)-coefficient of c.

The cuts used in the previous lecture were actually specific choices of vectors c: whenever an

edge (i, j), i < j, occurs in the cut with sign ±1, we take ±e(i,j), and add up those vectors. The

outcome satisfies (33.8), as one can check by looking at this picture:

(33.9)
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e(p,q) − e(q,r) e(p,q) + e(p,r) e(p,r) + e(q,r)

as standing for vectors (up to overall ±1 signs)

(33.10) c = ±(e(p,q) − e(q,r)), c = ±(e(p,q) + e(p,r)), c = ±(e(q,r) − e(p,r)).

Of course, a general solution of Dt
2c = 0 doesn’t correspond to a cut, and one could skip the

geometric intuition and just look for such solutions directly, by solving that system of equations

like any linear algebra problem.

Example 33.6. The cut in the torus we drew last time,

(33.11)
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corresponds to the vector

(33.12) c = e(2,3) + e(5,6) + e(8,9) − e(3,8) + e(5,9) + e(2,6).

(33c) Theory aspects. Remember that D1D2 = 0. For the transposed matrices, we have

(33.13) Dt
2D

t
1 = (D1D2)

t = 0.

In principle, this seems to provide an easy way to find solutions of Dt
2c = 0: any vector c = Dt

1b

will do. However, these are useless for our purpose:

Lemma 33.7. If c = Dt
1b, then windc(l) = 0 for all loops l.

The proof is a simple matrix computation: since D1vl = 0,

(33.14) windDt
1b
(l) = (Dt

1b) · vl = b · (D1b) = 0.
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What is the overall implication? We have seen that any c ∈ Rn1 with Dt
2c = 0 gives rise to a

combinatorial winding number windc. The number of linearly independent such c is

(33.15) nullity(Dt
2) = n1 − rank(Dt

2) = n1 − rank(D2).

However, we now that some of those combinatorial winding numbers are just zero. The number

of linearly independent c which are useless in this way is

(33.16) rank(Dt
1) = rank(D1).

Hence, the actually useful number is

(33.17) nullity(Dt
2)− rank(Dt

1) = n1 − rank(D2)− rank(D1) = b1(K).

In words, this means that there are b1(K) essentially different ways of measuring “how a loop

winds around K”. Finally, this provides us with a geometric intuition for the first Betti numbers,

even though it’s one that requires quite a bit of background knowledge. The extreme case is

b1(K) = 0. In that case, the combinatorial winding numbers are all zero, which means they

provide no information whatsoever about homotopy classes of loops. To understand homotopy

better, one would then need to refine our tools (see the case of the projective plane from the end

of the previous lecture; the mod 2 calculation used there hints at a whole new concept, that of

mod 2 Betti numbers).
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