Comprehension questions

PROBLEM 28.1. Draw a triangulation of this:

PROBLEM 28.2. For every $n \ge 3$, find a set of n points, not all lying on a line, which admits only one triangulation.

PROBLEM 28.3. Here are two triangulations of the square $P = [-1,1] \times [-1,1]$, using all its integer points as vertices. Use those to give approximate values for $\int_P x^2 + y^2$, and compare that with the actual value.

PROBLEM 28.4. Find a set of 5 points, no three of which lie on the same line, and such that every possible triangulations is Delaunay.

PROBLEM 28.5. Here is a picture of the point set (i, j) where $i, j \in \{0, ..., 10\}$ and at least one of the coordinates i and j lies in $\{0, 1, 9, 10\}$; together with a Delaunay triangulation.

What is the shape complex at scale $\sigma = 3$? Just drawing it is enough.

18.900 Geometry and Topology in the Plane Spring 2023

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.