Comprehension questions

Problem 28.1. Draw a triangulation of this:

Problem 28.2. For every $n \geq 3$, find a set of n points, not all lying on a line, which admits only one triangulation.

Problem 28.3. Here are two triangulations of the square $P=[-1,1] \times[-1,1]$, using all its integer points as vertices. Use those to give approximate values for $\int_{P} x^{2}+y^{2}$, and compare that with the actual value.

Problem 28.4. Find a set of 5 points, no three of which lie on the same line, and such that every possible triangulations is Delaunay.

Problem 28.5. Here is a picture of the point set (i, j) where $i, j \in\{0, \ldots, 10\}$ and at least one of the coordinates i and j lies in $\{0,1,9,10\}$; together with a Delaunay triangulation.

What is the shape complex at scale $\sigma=3$? Just drawing it is enough.

MIT OpenCourseWare
https://ocw.mit.edu

18.900 Geometry and Topology in the Plane

Spring 2023

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

