Comprehension questions

Problem 28.1. *Draw a triangulation of this:*

![Triangulation of a square](image1.png)

Problem 28.2. *For every $n \geq 3$, find a set of n points, not all lying on a line, which admits only one triangulation.*

Problem 28.3. *Here are two triangulations of the square $P = [-1,1] \times [-1,1]$, using all its integer points as vertices. Use those to give approximate values for $\int_P x^2 + y^2$, and compare that with the actual value.*

![Triangulations of a square](image2.png)

Problem 28.4. *Find a set of 5 points, no three of which lie on the same line, and such that every possible triangulations is Delaunay.*

Problem 28.5. *Here is a picture of the point set (i, j) where $i, j \in \{0, \ldots, 10\}$ and at least one of the coordinates i and j lies in $\{0, 1, 9, 10\}$; together with a Delaunay triangulation.*

![Point set and Delaunay triangulation](image3.png)

What is the shape complex at scale $\sigma = 3$? Just drawing it is enough.