## Comprehension questions

Problem 31.1. Take two tetrahedra, stuck together at a vertex. Is that a surface? (Short explanation please.)


Problem 31.2. Show explicitly that the octahedron is orientable.
Problem 31.3. As stated in the lecture, a surface must have an even number of triangles. Why?
Problem 31.4. Is there a surface (any number of components is allowed) with Euler characteristic 3? If there is, give an example; if there isn't, explain why not.

Problem 31.5. The triangle tilings 6.9 and 6.11) are periodic, and therefore one can get a combinatorial version of the torus from each of them. Draw those two surfaces (remembering that according to our definition, different edges can never have the same endpoints).

MIT OpenCourseWare
https://ocw.mit.edu

### 18.900 Geometry and Topology in the Plane

Spring 2023

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

