IX. CURVED GEOMETRIES

Comprehension questions

PROBLEM 37.1. For hyperbolic geometry, check by explicit computation that x(t) = 0, $y(t) = e^t$ solves the geodesic equation.

PROBLEM 37.2. Take the geometry $\psi(x, y) = -\ln(1+x^2+y^2)$. Check that the circle $(x(t), y(t)) = (\cos(t), \sin(t))$ solves the geodesic equation. (In the next lecture, we'll learn some general statements that apply to this case; but for now, please do the computation from scratch.)

PROBLEM 37.3. Think of a geometry where the straight line segment from (0,0) to (1,0) is a geodesic, but is not the shortest path connecting those two points. You don't have to give any formulae, it's enough to sketch what the function ψ should look like.

18.900 Geometry and Topology in the Plane Spring 2023

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.