Comprehension questions

Problem 37.1. For hyperbolic geometry, check by explicit computation that $x(t)=0, y(t)=e^{t}$ solves the geodesic equation.

Problem 37.2. Take the geometry $\psi(x, y)=-\ln \left(1+x^{2}+y^{2}\right)$. Check that the circle $(x(t), y(t))=$ $(\cos (t), \sin (t))$ solves the geodesic equation. (In the next lecture, we'll learn some general statements that apply to this case; but for now, please do the computation from scratch.)

Problem 37.3. Think of a geometry where the straight line segment from $(0,0)$ to $(1,0)$ is a geodesic, but is not the shortest path connecting those two points. You don't have to give any formulae, it's enough to sketch what the function ψ should look like.

MIT OpenCourseWare
https://ocw.mit.edu

18.900 Geometry and Topology in the Plane

Spring 2023

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

