Comprehension questions

Problem 8.1. Draw all possible 7 -bounce periodic trajectories for billiards in a circle (up to rotations of the circle). You do not have to justify your answer.

Problem 8.2. Write a computer program which finds, at least approximately, periodic billiards trajectories in the ellipse $x^{2} / 2+y^{2}=1$, by looking for long polygonal loops with vertices on the ellipse. Draw a 5-bounce trajectory that the program found, and write down its length.

The problem below uses the phase space for an ellipse (which is a shape with no corners). This is not a problem: you just fix an arbitrary starting point on the boundary, and then s measures the arclength distance going anticlockwise from that point, so phase space in (s, θ) coordinates is a single rectangle

$$
\Omega=[0, \text { arclength of the ellipse }) \times(0, \pi) .
$$

Problem 8.3. Take the trajectory from (8.6), and draw an approximate picture of it in the phase space of an ellipse. In your picture, include a bunch of bounces in the future, enough to suggest the behaviour for large numbers of bounces.

MIT OpenCourseWare
https://ocw.mit.edu

18.900 Geometry and Topology in the Plane

Spring 2023

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

