The separation axioms

We! give two examples of spaces that satisfy a given separation axiom but not the next stronger one. The first is a familiar space, and the second is not.

Theorem F.1. If J is uncountable, $\mathbb{R}^{\boldsymbol{J}}$ is completely regular, but not normal.

Proof. The proof follows the outline given in Exercise 9 of $\$ 32$. The space \mathbb{R}^{\top} is of course completely regular, being a product of completed Y regular spaces. Let $\mathrm{X}=\mathbb{Z}_{+}^{\top}$; since X is a closed subspace of \mathbb{R}^{J}, it suffices to show that X is not normal. We shall use functional notation for the elements of X rather than tuple notation.

Given a finite subset B of $J_{\text {; }}$ and given a point x of X, let $U(x, B)$ be the set of all those elements Y of X such that $Y(\alpha)=x(\alpha)$ for all α in B. Then $U(x, B)$ is open in X; indeed, it is the cartesian product ΠU_{α}, where U_{α} is a one-point set $f 6 r \alpha$ in B ard $U_{\alpha}=\mathbb{Z}_{+}$ otherwise. It is imediate that the sets $U(x, B)$ form a basis for X, since the one-point sets form a basis for \mathbb{Z}_{4}.

Given a positive integer n, let P_{n} be the subset of X consisting of those maps $x: J \rightarrow \mathbb{Z}_{+}$slich that for each i different from n, the set $x^{-1}(i)$ consists. of at most one element of J. (This of course implies that $x^{-1}(n)$ consists of uncountably many elements of J.) The set P_{n} is closed, for if y is not in P_{n}, then there is an integer $i \neq n$ and distinct indices α, β of J stich that $y(\alpha)=y(\beta)=i$. The basis element $U(y, B)$, where $B=\{\alpha, \beta\}$, contains Y and is disjoint from P_{n}.

Furthermore, if $n \neq m$, then P_{n} ard P_{m} are disjoint. For if x is in $P_{r_{i}}$ then x meps uncountably many elements of J tc n; while if x is in $P_{n^{\prime}}$ it maps at most one element of J to n.

Let U and V be open sets of X containing P_{1} ard P_{2}, respectively. We show that U and v are not disjoint. It follows that X is not normal.

Step 1. We define a sequence $\alpha_{1}, \kappa_{2}, \ldots$ of elements of J, a sequence x_{1}, x_{2}, \ldots of points of x, arid a sequence $n_{1}<n_{2}<\ldots$ of positive integers, inductively as follows:

Let $x_{1}(\alpha)=1$ for all α. Then x_{1} is in P_{I}; choose a finite nonempty subset B_{1} of J such that $U\left(x_{1}, B_{1}\right)$ is contained in U. Index the elements of B_{1} so that

$$
B_{1}=\left\{\alpha_{1}, \ldots, \alpha_{n_{1}}\right\}
$$

Now suppose that x_{k} and n_{k} are given, and that α_{j} is defined for $j=1, \ldots, n_{k}$. Let B_{k} denote the set

$$
B_{k}=\left\{\alpha_{j} \mid 1 \leqslant j \leqslant n_{k}\right\}
$$

Define a point X_{k+1} of X by setting

$$
\begin{array}{ll}
x_{k+1}\left(\alpha_{j}\right)=j & \text { for } 1 \leq j \leq n_{k}, \quad \text { ard } \\
x_{k+1}(\alpha)=1 & \text { for all other } \alpha .
\end{array}
$$

Then x belongs to P_{1}. Choose B_{k+1} so that $U\left(x_{k+1}, B_{k+1}\right)$ is contained in U. Without loss of generality, we can choose B_{k+1} so that it properly contains B_{k}. Index the elements of $B_{k+1}-B_{k}$ so that

$$
B_{k+1}-B_{k}=\left\{\alpha_{j} \mid n_{k}<j \leq n_{k+1}\right\} .
$$

By induction (actually, recursive definition), we have defined x_{i} ard α_{i} and n_{i} for all i.

Step 2. Now, define a point y of X by setting

$$
\begin{aligned}
& y\left(\alpha_{j}\right)=j \text { for ail } j, \\
& y^{\prime}(\alpha)=2 \text { for all other } \alpha .
\end{aligned}
$$

Then Y belongs to P_{2}. Choose C se that $U(y, C)$ is contained in V. Since C is finite, it contains α_{j} for only finitely many j; choose n_{k} so that C contains no α_{j} for which $j>n_{k}$. We shall show that $U(y, C)$ intersects $U\left(x_{k+1}, B_{k+1}\right)$, so that the sets U and V are not disjoint. Let us define a point z of X (cleverly!) by setting

$$
\begin{aligned}
& z\left(\alpha_{j}\right)=j \text { for } 1 \leq j \leq n_{k}, \\
& z\left(\alpha_{j}\right)=1 \text { for } n_{k}<j \leq n_{k+1}, \quad \text { and } \\
& z(\alpha)=2 \text { for all other } \alpha .
\end{aligned}
$$

Then $z\left(\alpha_{j}\right)$ equals $x_{k+1}\left(\alpha_{j}\right)$ for $1 \leq j \leq n_{k+1}$, so that z belongs to $\mathrm{U}\left(\mathrm{x}_{\mathrm{k}+1}, \mathrm{~B}_{\mathrm{k}+1}\right)$. On the other hand, we show that $z(\alpha)=y(\alpha)$ for α in C, so that z belongs to $U(y, C)$; our result is then proved. It is certainly true that $z(\alpha)=y(\alpha)$ if α is one of the indices α_{j}, for in that case $j \leq n_{k^{\prime}}$ so that $z\left(\alpha_{j}\right)=j=y\left(\alpha_{j}\right)$. And it is true that $z(\alpha)=y(\alpha)$ if α is not one of the indices α_{j}; for in that case $z(\alpha)=2=y(\alpha) \cdot \square$

Theorem F.2. There is a space that is regular but not completely regular.

Proof. The proof follows the outline given in Exercise 11 of 833 .
Step 1. Given an even integer m, Let I_{m} denote the line segment $m \times[-1,0]$ in the plane. And given an odd integer n, ard an integer $k \geqslant 2$, let $C_{n, k}$ denote the union of the line segments

$$
\begin{aligned}
& (n+(k-1) / k) \times[-1,0] \\
& (n-(k-1) / k) \times[-1,0]
\end{aligned}
$$

ard the semicircle

$$
\left\{x \times y \mid(x-n)^{2}+y^{2}=(k-1)^{2} / k^{2} \quad \text { and } \quad y \geqslant 0\right\}
$$

in the plane. We call $C_{n, k}$ an "arch" and we call. L_{m} a "pillar." Finally, we let X. be the union of the pillars $L_{n \prime}$, for all even integers m, ard the arches $C_{n, k^{\prime}}$ for all odd integers n arid all integers $k \geq 2$, along with two additional points a ard b, which we call the "points at infinity." For each odd n and each $k \geq 2$, we let $p_{n, k}$ be the point

$$
p_{n, k}=n \times(k-1) / k ;
$$

it is the "peak" of the arch $C_{n, k}$. See the accompanying figure.

We' now topologize X in a most unusual fashion. We take as basis elements all sets of the following five types:
(i) Each one-point set $\{p\}$, where p is a point lying on any one of the arches $C_{r, k}$ thiat is different from the peak $p_{n, k}$ of this arch.
(ii) The set formed from one of the sets $C_{n, k}$ by deleting finitely many points.
(iii) Fcr each even integer m, each ε with $0<\varepsilon<1$, and each $\mathrm{y} \in[-1,0]$, the intersection of X with the horizontal open line segment $(\mathrm{m}-\varepsilon, \mathrm{m}+\varepsilon) \times \mathrm{y}$.
(iv) Fcr each even integer m, the union of $\{a\}$ ard the set of points $x \times y$ of x for which $x<m$.
(v) For each even integer m, the union of $\{b\}$ ard the set of points $x \times y$ of X for which $x>m$.

The basis elements of type (ii) are the neighborhoods of the peaks; those of type (iii) are the neighborhoods of points lying on the pillars; and those of types (iv) and (v) are the neighborhoods of the points at infinity. It is easy (but boring) to check the conditions for a basis; we leave it to you. Each of the arches $C_{n, k}$ is an open set of X.

We shall call the space X "Thomas' arches," because it was invented by the topologist John Thomas.

Step 2. It is trivial to check that X is T_{1}-space; given two points, each has a neighborhood that excludes the other. To check regularity, let p be a point of X, and let U be a basis element containing p. We consider several cases, showing there is a neighborhood V of p such that $\overline{\mathrm{V}} \in \mathrm{U}$.

If U is a basis element of types (i), (ii), or (iii), then $\bar{U}=U$, and we are finished. So suppose that U is of type (iv), consisting of the point a along with those points $x x y$ of x for which $x<m$. If p is the point a, then we let V consist of the point a along with those points $x \times y$ of X for which $x<m-2$. Then $\bar{V}=V U L_{m-2^{\prime}}$ which lies in U. If p is some other point of U, there is a basis element V of type (i), (ii), or (iii) containing p and lying in U; then $\bar{V}=V$ ard we are finished. The argument when U is of type (v) is similar.

Step 3. X is not completely regular. Indeed, we show that if f is any continuous function $f: X \rightarrow[0,1]$, then $f(a)=f(b)$.

Given $n_{i} k$, let $S_{i, k}$ be the set of points p of the arch $C_{n, k}$ for which the value of f at p is different from the value of f at the peak $p_{n, k}$ of the arch. Then the set $S_{n, k}$ is countable: Let $f\left(p_{n, k}\right)=c$. The set $f^{-1}(c)$ is a G_{δ}-set in X, since it is the intersection of the open sets $\mathrm{F}^{-1}\left(\left(\mathrm{c}-\frac{1}{\mathrm{n}}, \mathrm{C}+\frac{1}{\mathrm{n}}\right)\right)$. Each of these open sets contains all but finitely many points of $C_{n, k}$. Hence their intersection contains all but countably many points of $C_{n, k}$. Thus $S_{n, k}$ is countable.

It follows that the union of all the sets $S_{n, k}$ is countable. Therefore we may choose a real number d with $-1 \leq d \leq 0$ stich that the horizontal line $t R \times\{d\}$ intersects none of the sets $S_{n, k}$. This means that for each arch $C_{n, k^{\prime}}$ the value of f at the points where the arch intersects this horizontal line equals the value of f at the peak of the arch.

Now for each even integer m, lett c_{r} be the point where the line $\mathbb{R} \times\{d\}$ intersects the pillar L_{m}. We assert that the values of f at the points C_{m} and c_{m+2} are equal.

To prove this fact, set $n=m+1$, consider the arch $C_{r 1, k^{\prime}}^{-}$and let a_{k} and b_{k} denote the points of intersection of this arch with the line $\mathbb{R} \times\{d\}$. (For convenience, let a_{k} be the one with smaller x-coordinate.) Then as k increases, the sequence a_{k} converges to c_{m}, while the sequence b_{k} converges to $c_{\pi+2}$. Continuity of f then implies that $f\left(a_{k}\right)$ converges to $f\left(c_{m}\right)$ and $f\left(b_{k}\right)$ converges to $f\left(c_{m+2}\right)$. But by construction,

$$
f\left(a_{k}\right)=f\left(p_{n, k}\right)=f\left(b_{k}\right)!
$$

We conclude that $f\left(c_{m}\right)=f\left(c_{m+2}\right)$:
It follows that the values of f at the points c_{m} are all equal. . But c_{m} converges to the point a $a s_{i} m$ goes to $-\infty$, ard c_{m} converges to b as m goes to $+\infty$. It follows from continuity of f that $f(a)=f(b)$.

