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The separation axioms


We give two examples of spaces that satisfy a given separation


axiom but not the next stronger one. Te first is a familiar space,


and the second is not.


Teorem F.1. If J is uncountable, J is completely regular, but


not normal.


Proof. The proof follows the outline given in Exercise 9 of §32.


The space RJ is of course completely regular, being a product of


completel regular spaces. Le't X = Z+ ; since X is a closed subspace


of RJ it suffices to show that X i not normal. WE! shall use functional


notation for the elements of X rather than tuple notation.


Given a finite subset B of J and given a point x of X, let


U(x,B) be the set of all those elements y of X such that y(od = x( )


for all a in B. Then U(x,B) is open in X; irldeed, it is the cartesian 

product FU~, where U is a one-point set fr in B and U = 2+


otherwise. It is immediate that the sets U(x,B) form a basis for X,


since the one-point sets form a basis for 7.


Given a positive integer n, let Pn be the subset of X consisting


of those maps x :J-47 such that for each i dfferent from n,

-1


the set x (i) consists, of at most one element of J. (This of course


implies that x In) consists of uncountably many elements of J.)


The set Pn is closed, for if y is not in P n, then there is an integer


i n and distinct indices , " of J such that y(4) = y( ) = i. 

The basis element U(y,E), where B = ,jiC, contains y and is 

disjoint from Pn


Furthermore, if n m, then Pn and Pm are disjoint. For if x


is in P , then x maps uncountably many elements of J to n; while


if x is in P , it maps at most one element of J to n. 

L!t U and V be open sets of X containing P1 ard P2 respectively.


We show that U and v are not disjoint. It follows that X is not normal.
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Step 1. We define a sequence 1' 2'",... of elements of J, a


sequence xl, x2,... of points of X, ar;d a sequence nl < n 2 < ..


of positive integers, inductively as follows:


Let x(A) = 1 for all o(. Then xl is in Pi; choose a finite nonempty


subset B1 of J such that U(x1, B 1) is contained in U. Index the


elements of B1 so that


Now suppose that xk and nk are given, and that dj is defined for


j = 1,...,n k. Let Bk denote the set


Bk = ,j |1 

Define a point x+l of X by setting


:+l(d;) = j for l
1j<nk , and


XI+l(o) = 1 for all other ct.


Then x belongs to P1. Cloose Bk+l so that U(xk+l,Bk+l) is contained


in U. Without loss of generality we can choose B+ 1 so that it properly


contains Bk. Index the elements of Bk+l - Bk so that


B +- -Bi =f (j nk.ij inkl .


By induction (actuall.y,recursive definition), we have defined x and a(.i 

8nd ni for all i.
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Step 2. Now, define a point y of X by setting


y(j") = j for all j ,


y( A) = 2 for all other c.


Then y belongs to P2. Choose C so that U(y,c) is contained in V.


Since C is finite, it contains dj for only finitely many j; choose


nk so that C contains no (j for which j-in We shall show that U(y,C)
.


intersects U(xk+l,Bk+l), sO that the sets U ad V are not disjoint.


Let us define a point z of X (cleverly!) by setting


z( j) = j for 1 j n k


z(j) = 1 for nk< j $n+l, and


z(cd) = 2 for all other . 
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Then z(ij) equals xk+l(i) for l<jznk1, sc that z belongs


to U(xk+l,Bk+l). On the other hand, we show that z( ) = y(ot) for


el in C, so that z belongs to U(y,C); our result is then proved. It is


certainly true that z(o ) = y(o) if ot is one of the indices j:., for


in that case j<nk, so that z( j) = j = y(Olj). And it is true that


z(o ) = y( oL) if A is not one of the indices o(j; for in that case 

z(,) = 2 = y(]). 


Theorem F.2. There is a space that is regular but not completely regular.


Proof. The proof follows the outline given in Exercise 11 of §33.


Step 1. Given an even integer m, Let Lm denote the line segment


m [-1,0] in the plane. And given an odd integer n, and an integer k> 2,


let C denote the union of the line segments

n,k


(r + -1,0](rL - (k-l)/k)(k-l)/k)X[-1,O] 

(n- (k-i)/k),C-l1O0


and the semicircle


fx y I(x-n)2 + y2 = (k-1)2/k2 ard y> O0


in the plane. We call C ar '.arch" and we call: L a "pillar."

n, k m 

Finally, we let X be the union of the pillars L, for all even integers


m, ard the arches Cn k for all odd integers n ar:d all integers k_>2,


along with two additional points a ard b, which we call the "points at


infinity." For each odd n and each k>2, we let Pn,k be the point


Pn,k = n (k-l)/k ;


it is the "peak" of the arch C k . See the accompanying figure.
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We now topologize X in a most unusual fashion. We take as basis


elements all sets of the following five types:


(i) Each one-point set fp3, where p is a point lying on any one


of the arches Cnl that is different from the peak Pn,k of this arch.


(ii) The set formed from one of the sets Cn,k by deleting finitely
k


many points.


(iii) Fcr each even integer m, each with 0 <E1, and each


y [-1,0], the intersection of X with the horizontal open line segment


(m - , m+ ) y. 

(iv) Fcr each even integer m; te union of a} ar;d the set of points


xxy of X for which x m.


(X') For each even integer m, the union of b} ard the set of


points xXy of X for which x>m.


The basis elements of tpe (ii) are the neighborhoods of the peaks; those


of type (iii) are the neighborhoods of points lying on the pillars; and those


of types (iv) and (v)are the neighborhoods of the points at infinity. It is


easy (but boring) to check the conditions for a basis; we leave it to you.


Each of the arches C is an open set of X.

n,k


We shall call the space X "Thomas' arches," because it was invented


by the topologist John Thomas.


Step 2. It is trivial to check that X is a T-space; given two points,


each has a neighborhood that excludes the other. To check regularity,


let p be a point of X; and let U be a basis element containing p.


We consider several cases, showing there is a neighborhood V of p such


that VcU.


If U is a basis element of types (i), (ii), or (iii), then U = U,


and we are finished. So suppose that U is of type (iv), consisting of the


point a along with those points xX y of X for which xm. If p is


the point a, then we let V consist of the point a along with those points


x y of X for which x< m- 2. Then V = VU TL-_ 2 which lies in U.


If p is some other point of U, there is a basis element V of type (i),


(ii), or (iii) containing p and lying in U; then V = V ar;d we are


finished. ?Te argument when U is of type (v) is similar.
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Step 3. X is not completely regular. Indeed, we show that if f


is any continuous function f:X--O[0,1], then f(a) = f(b).


Given nk, let Sk be the set of points p of the arch Cn k for


which the value of f at p is different from the value of f at the


peak Pnk Of the arch. Tlen the set Sn,k is countable: Let f(Pn) k = c.


The set f (c) is a G-set in X, since it is the intersection of the


-1 1 1

open sets f ((c - n , c + )). Each of these open sets contains all but 

finitely many points of Cn. Hence their intersection contains all but

n,k'


countably many points of Cnk. Tlus Snk is countable.


It follows that the union of all the sets S is countable. Therefore


we may choose a real number d with - d O sulch that the horizontal


line R d3 intersects none of the sets Sn k . This means that for each


arch Cnki the value of f at the points where the arch intersects this


horizontal line equals the value of f at the peak of the arch.


Now for each even integer m, let cm b the point where the line IR x dl


intersects the pillar L . We assert that the values of f at the points cm


and Cm+2 are equal.


To prove this fact, set n = m+], consider the arch C ,1 and let


ak and bk denote the points of intersection of this arch with the line


JR x d . (For convenience, let ak be the one with smaller x-coordinate.) Then


as k increases, the sequence ak converges to c , wile the sequence


bk converges to c +2 . Continuity of f then implies that f(ak ) converges


to f(cm ) and f(bk) converges to f(cm+2). But by construction,


f(ak = f(pnk) = f(bk)
)


We conclude that f(cm) = f(cm+2)4


It follows that the values of f at the points cm are all equal . But


cm converges to the point a as; m goes to -wo, and cm converges to b


as m goes to +. It follows from continuity of f that f(a) = f(b). a 
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