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Countability axioms


We have studied four basic countability properties:


(1) The first countability axiom.


(2) The second countability axiom,


(3) The Lindel6f condition.


(4) tse condition that the space has a countable dense subset.


We know that condition (2) implies each of the others. We show now that


this is the only-general theorem relating these four conditions.


We shall in fact find, for each subset of conditions (1), (3), and (4),


a space that satisfies the conditions in the subset, and none of the others.


This requires seven distinct examples!


Incidentally, there do exist relations among these four conditions for certain


types of spaces. For instance, for metrizable spaces, condition (1) is


automatically satisfied, and the other three conditions are equivalent to one


another. (See Exercise 5 of 30.) Similarly, for topological groups that


are first-countable, conditions (2), (3), and () are equivalent. (See.Exercise


18 of §30.)


Example 1. Conditions (1), (3), and (4). The space JPR is first-countable,


Lindelof, and has a countable dense subset , but is not second-countable.


(See Example 3 of 30.)


Ex:ample 2. Conditions (1) and (3). The ordered square is compact, and hence


Lindel6f. It is readily seen to be first-countable. It does not have


a countable dense subset, since each dense subset must contain at least one


point of each interval ax (0,1).


DEample 3. Conditions (1) and (4). The space IPjx [R is first-countable,


and the rational points form a countable dense subset. It is not Lindelof; see


Example 4 of §30.


Example 4. Conditions (3) and (4). The space II is not first-countable;


the proof given in Example 2 of §21 for R works also here. It is compact,


by the Tychonoff theorem, so it is Lindelof. We construct a countable dense


subset of I as follows:
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Given a partition


0 = a0 < al ... •an = 1 

of the interval I = [0,1], where the ai are rational, and given a sequence


bl,... ,bn 

of rational numbers, let us define a step function f: I--->I by setting


f(x) =b. for ai_. _ x ai fi = 1,...,n)

~~(,"~ fa)) b 

f(a n ) = bn -

Then f is an element of I ; and the set of all such f is countable.


We shall show that these functions form a dense subset of iI.


BLt us take a typical basis element B f6r II; it is the intersection


of finitely many sets of the form


-i
c (Ui) 
1


for i = 1,...,ni where c1<c 2 < ... cn are points of I and Ui is an open


set of I, for each i. The set B consists of all functions from I to 


whose graphs intersect the vertical intervals in the following figure.
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Given B, let us choose rational numbers a. such that


1


O0- Cl< al< C,< a~3 ... < Crrt a 1.0 - a- 1 a 1 <c 2 r. 

Then, for each i, choose b to be a rational number in the open set U.


The corresponding function f ha1s the graph pictured; it consists of


horizontal line segments with rational end points.
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Example 5. Condition (1). The space SYL is first-countable, but it is


not Lindel6f. (Take the open cover by sets of the form S , for *t< 2L .) Nor 

does it have a countale dense subset.


Example 6. Condition (3). TI-le space S, is not first-countable, nor


does it have a countable dense subset. But it is Lindelbf, being compact.


Example 7. Condition (4). The space RI is not first-countable; see


Example 2 of §21. Nor is it Lindel6f; for it is regular, and a regular


Lindel6f space is normal (see Exercise 4 of §32); but RI is not normal.


(See Notes F.) Finally, we note that if a space has a countable dense subset,


then so does any open subspace of it. The space R is homeomorphic to the


space (0,1)I , which is an open subspace of II; tlerefore it has a countable


dense subset.



