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Normality of quotient spaces


For a quotient space, the separation axioms--even the ausdorff property--


are difficult to verify. We give here three situations in which the quotient


space is not only Hausdorff, but normal.


Theorem G.1. Let p: X-pY be a closed quotient map. If X


is normal, then Y is normal.


Proof. First we show that if A is a subset of Y, ad N is an


open set of X containing p *(A), then there is an open set U. of Y


containing A such that p (U) is contained in N.


The proof is easy. The set C = X- N is closed. The set p(C) is


closed and disjoint from A, so that the set U = Y- p(C) is an open set


of Y that contains A. If x is a point of U, then p (x) contains


no point of C, so that it lies in N; thus p (U) is contained in N,


Now we verify normality of Y. Since one-point sets are closed in X


and p is a closed map, one-point sets are closed in Y. NOW let A and


B be disjoint closed sets of Y. Since p is continuous, p (A) and


p (B) are disjoint closed sets of X. Choose disjoint open sets N1 and


N2 of X containing them. Let U1 and U2 beIopen sets of Y containing


A and B, sch that p (U1) lies in N1 and p' (U2) lies in N2'


Because N1 and N2 are disjoint, so are U 1 and U2 0 

Definition. Let X and Y be disjoint spaces; let A be a closed subset


of X; and let f: A-SY be a continuous function. We. define the


adjunction space Zf to be the quotient space obtained from the union of X


and Y by identifying each point a of A with the point f(a) and with all


the points of f (f(a)). Let p: XU Y Zf be the quotient map.


Now the map ply is a continuous injection of Y into Zf We show


that it is also a closed map. If C is a closed set of Y, then p- (p(C))


equals the union of C and f (C). The set C is closed in Y, so


the set f (C) is closed in A and hence closed in X. Therefore,


p (p(C)) is closed in XY, s that p(C) is closed in Zf, by definition


of the quotient topology.


It now follows that p(Y) is a closed subspace of Zf, and that ply


is a homeomorphism of Y with p(Y).




X 
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Theorem G.2. If X and Y are notial, then so is Zf.


Proof. A direct proof, using the definition of normality, is a bit


elaborate. (See [D], p. 145.) An easier proof uses the Tietze theorem,


as we now show.


First, we note that Zf is T1. Let z be a point of Zf. If z


belongs to p(Y), then z3} is closed because one-point sets are closed in


Y, and p)Y : Y-->Zf is a closed map. Otherwise, p-l (z) is a one-point set

in X, and therefore closed; it.follows from the definition of a quotient map


that z) is closed.


Now let B and C be disjoint closed sets of 7f. Let BX = p(B) X


and CX = p (C)nX. Similarly, let By = p (B) Y and Cy = p- (C) Y. 

by setting h = g AX o A, and h = 0 on BX , and h = 1 on XC
C . 

- _ / 2 
Y - & C 

Using normalilty of Y, choose a continuous function g : Y -[,]


that equals O on By and 1 on Cy. Then define


andto on on C
byfunsetting h = gof on A [0,1]h = Oinduces ad h=continuous1 
Because each of these three sets is closed in X and h is unambiguously


defined when two of the sets overlap, h is continuous, by the pasting lemma.


Using normality of X and the Tietze theorem, extend h to a continuous


function k : X. [-O1]. Then g and k together define a continuous


function from XUY into [0,1]; it induces a continuous function


4 
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F: Zf-;[O,1]


on the quotient space that equals 0 on B and 1 on C. TLe sets


F ([O,½)) and F ((½,1]) are then disjoint open sets about B and C,


respectively. I


Oe application of adjunction spaces occurs in point-set topology, when


one is studying absolute retracts. (See Exercise 8, p.224.) Another application


occurs in algebraic topology, when one constructs a CW complex; we will discuss


this application shortly.


Definition. Let X be a space and let X j be a family of subspaces 

of X whose union is X. The topology of X is said to be coherent with the


sitbspaces X, if a set A is closed in X whenever A XC is closed in XX


for each [. (Or, equivalently,if a set U is open in X whenever Un XO 

is open in X for each .)


There is a strong connection between coherent topologies and quotient


spaces. It is described as follows: To begin, let us give J the discrete


topology and consider the product space X J. Tlen we consider the subspace


of XX J that is the union of the subspaces X4X [41, for all z J. This 

space is called the topological sum (or sometimes the disjoint union) of the


spaces X. It is denoted JX . If we project Xx J onto X,1 we obtain 

a continuous map 

p: X X 

which maps each space XpZh by the obvious homeomorphism onto X . The map 

p is a quotient map if and only if the topology of X is coherent with the


subspaces X . It follows that if X has the topology coherent with the


subspaces X , then a map f : X--Y is continuous if and only if each


of the functions fXK is continuous.


Theorem G.3. Let X be a space that is the union of countably many cosed


subspaces Xi , for i Z. Suppose the topology of X is coherent with


these subspaces. If each Xi is normal, then so is X.

1
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Proof. If p is a point of X, thlen ~Pn X is closed in Xi for each


i, so p} is closed in X. Therefore X is a T1 space.

Let A arnd B be closed disjoint sets in X. IDefine YO = AU B, and


for n>O, define


Yn AVBUXl1 ...UX 

Define a continuous function f : YO >[C0,1] by letting it equal 0 on A


and 1 on B. In general, suppose one is given a continuous function


fn : Yn-[- , ] . The space Xn+l is normal and Yn Xn+l iS closed in


Xn+. If gn denotes the restriction of fn to the subspace YnCIXn+l,


we use the Tietze theorem to extend g to a continuous function


g: X+ 1 - [0,1] Because Yn ar:d Xn+1 are closed subsets of Yn+l' the


functions f and g combine to define a continuous function-

n


- °'1
fn+l: Yn+l [ C)
l]


that is an extension of f . Te; functions f in turn combine to define

n n


a function f: X-->[0,1] that equals 0 orn A ar;d 1 on B. Because X


has the topology coherent with the subspaces the map f is continuous. EJ
Xn,


Example 1. The preceding theorem does not extend to uncountable coherent


unions. Given an element Sk of S , let X be the subspace consisting of 

all elements x of S such that x < . lTen X. is a closed interval 

in Sa so it is compact.


The space S x S iS the union of the spaces X SL, each of which


is compact Hausdorff and thus normal. We show that S - SD- , which is not


normal, has the topology coherent with these subspaces.


Let U be a subset of S xS such that U (X x s is open in this 

subspace, for each 4. T-,en the intersection


U n (SX Sl ) 

is open in Sax Sfor each , and hence open in S S Since U is 

the union of the sets


Un ( SQ ), 
it is open in S Sag, as desired. 



X 
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It is an interesting question to ask under what conditions coherent


topologies exist. One has the following two theorems:


Theorem G.4. Let X be a set that is the union of the topological


spaces X , for o(C-J. If there is a topological space XT having 


as its underlying set, such that each X~ is a subspace of XT , then there


is a topological space X such that each X, is a subspace of X and


the topology of X is coherent with the subspaces X. The topology of


XC is finer than that of XT
.


Proof. We define a set D to be closed in Xc if Dn X is closed


in X for each . It is immediate that 0 and X are closed. The


required properties about unions and intersections follow from the equations


U. DrI) nAXL = (D 1 X)U *...V(Dn X ) ,(D1V 


(R LAX Djox, = ID eb (ru X ), 

where o is an arbitrary collection of closed sets. 

Note that if E is closed in XT, then E XO is closed in X.


for each 4., so that E is closed in X. Thus the topology of Xc


is finer than the topology of XT
.


What else is there to prove? We must prove that each X4 is a subspace


of XC . Isn't this obvious? Not quite. First, note that if A is closed


in XC , then A X is closed in Xi by definition. Conversely, suppose


B is closed in X. BEcause Xo4 is a subspace of XT, we have B = A Xi 

for some set A closed in XT. aBcause the topology of XC is finer than


that of XTI he set A is also closed in XC . Thus B = A AX4 for


some A closed in XC) as desired. 0 

Theorem G.5. Let X be a set that is the union of the topological spaces


X; , for (J.. If for each pair of indides d,, the set XAn XA


is closed in both X, aad X , and inherits the same topolcxy


from each of them, then X has a topology coherent with the subspaces X.


Each Xa is a closed set in X in this topology.
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Proof. Once again, we define a topological space XC by declaring a


set D to be closed in XC if DhXd is closed in X for each i. It is


immediate that this is a topology on X.


We show that each space XA is a closed subspace of XC. First,


if A is closed in X, then AnXi is closed in X1 by definition of X. 

Convarsely, let. B be a closed set of X ; we show B is closed in XC.


Since
To do this, we must show that BnX is closed in X for each s. 


B i. closed in X, the set B XA is closed in Xn X because the latter


is a subspace of X ; Then B nX is closed in X because Xd X is 

a closed subspace of X a 

This theorem does not hold if the word "closed" is omitted from the


hypothesis. There is an example of a set X that is the union of three


spaces such that the intersection of any two of the spaces is a subspace


of each of them; but there is no topology on X at all of which all three


of the spaces are subspaces! (ee [Mu], p. 213.)


Example 2. Consider R in the product topology. Let Fn denote the


subspace of R consisting of all points x = (x],x 2,...) such that 

Xi = 0 for inn. Then one has the sequence of subspaces


1

R C 2C ...
,


each of which is a closed subspace of the next. Their union is R ,


which by Theorem G.5 has a topology coherent with the subspaces n.


Theorem G.3 implies that IRl is normal in this topology.


Now 1RO also has several other topologies as well, ones that it


inherits as a subspace of IR6 in its various topologies. The subset R


inherits its usual topology from each of these topologies on Re. Hence


Theorem G.4 also applies to show that R has a topology coherent with the


subspaces IR ; this theorem also implies that the coherent topology is finer


than each of these topologies on R. Since the one derived from the box


topology is the finest of these, one has the following:


Challenge question: Is the topology on R that is coherent with the


subspaces Rn tlhe same as the topology that IRO inherits as a subspace of


IR in the box topology?
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Final remark. Here is a quick outline of how these notions are used in


algebraic topology. (See §38 of [Mu] for more details.)


The unit ball in n is the subset of Rn consisting of all points


whose euclidean distance from the origin is less than or equal to one; the


unit sphere consists of those points for which this distance equals one. These


spaces are denoted Bn and Si , respectively. If there is a homeomorphism


h: Bn-->C, then C is called an n-cell, and we denote by Bd C the subspace


h(Sn-).


There is a class of spaces that is very important in algebraic topology


called CW complexes; they were invented by J.H.C.Whitehead. In algebraic


topology, one defines for a given space a number of groups, such as the homology


groups H (X), the cohomology groups Hn(X), and the homotopy groups InX).


Defining is one thing, but computing (or even getting useful information)


is another. The structure of CW complex gives one a tool for dealing with these


groups. Ci complexes are quite versatile--many useful spaces, such as the


Grassman manifolds we shall mention shortly, have the structure of a CW


complex. Or! the other hand, if one has some prescribed groups and wants


to find a space for which the homology groups, say, are isomorphic to these


groups, one can construct a CW complex that will do the job.


A CW complex is constructed as follows: One begins with a discrete


space, which we call X . Then one takes a collection of disjoirt i-cells C ,


and a family of continuous maps f_ :Bd C -X0. Ole forms the topological


sum C , and uses the maps f, to define a continuous map f : Bd C - X0


One forms the adjunction space obtained from X0 o C by means of this map.


This space is denoted X1; it is called a 1-dimensional CW complex.


So far, so good. Now one takes a collection of disjoint 2-cells D


and a continuous map g: 2 Bd D - X1 , and forms an adjunction space from


rD, and X1 bI, means of this map. This space is denoted X and is a


2-dimensional CW complex.


It is clear how to continue. One has eventually an n-dimensional CW complex


Xn, for each n. Are we finished? No. Recall that in the construction


of the adjunction space Xn, the projection map defines a homeomorphism of


-1 n -
Xn with a closed subspace of X. We normally identify X with this


closed subspace of X.
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With this convention, we now have a sequence of spaces


XO X1 C ... C X '-... 

each of which is a closed subspace of the next. Their union is given the


topology coherent with these subspaces; it is called an (infinite-dimensional)


CW complex.


In order to work with the space we obtain, it is essential that it be


a Hausdorff space. (Basically, so we know that compact sets are closed.)


The theorems we have proved in this section do much more than that; they show


that every CVT complex is normal.


Final final remark. We have talked a lot about how quotient spaces are


used in algebraic topology. Let us close by giving an example of how they are


used in differential geometry.


A very important space in differential geometry is the space G of
nk 
k-dimensional vector subspaces of Rn. It is called the Grassman manifold


of k-planes in n-space. The space G is thus the space of all lines

n,1


.
through the origin in R It is fairly intuitive what one means by saying that


two k-planes are "close" tc one another, but how does one topologize this space


rigorously? One topologizes it as a quotient space.


To be specific, let V be the set of all k by n matrices, where k n,
n,k

whose rows are orthonormal vectors. Such a matrix satisfies the equation AAt = Ik


There is an obvious topology on this set, for it can be considered as a


subspace of R . In this topology, it is compact, for it is closed and bounded,


as the equation AA = Ik shows. Let p: Vk Gn k be the map that


sends each matrix to the k-dimensional vector subspace of JR that is


spanned by its rows. We topologize n k by requiring p to, be a quotient


map.


Because p is continuous, it is immediate that Gn,k is compact. The


next question is this: Is: it Hausdorff? The answer is "yes," because the


map p is in fact a closed map, so Theorem G.1 applies.


To show p is closed, we examine first what the relationship is between


two matrices A' and B whose rows span the same vector subspace of Rn


This occurs precisely when each row of A equals a linear combination of


the rows of B, and conversely. This statement can be expressed by the matrix equation


A = CB, where C is a nonsingular k by k matrix. It follows that C satisfies the




C 
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equation CC = Ik, which means that C belongs to Vk,k' A quick


computation with matrices verifies this fact: The equation A.= CB, along


with the equations AAt = BB = Ik, implies that


. t 
ABt = C ard Ik = C(BAt).


t t

The first equation ives us, by transposing, the equation BA 


substituting this result into the second equation gives us the equation


I k = CCt. 

Now we show that p is a closed map. If S is a closed set in V


then the set' p-l(p(S)) is the set of all matrices of the form CA, where


belongs to Vk k and A is an element of S. Thus p (p(S)) is the


image of Vk kX S under the map given by matrix multiplication. Now Vk1


is compact ard S is compact (being closed in Vn). Their cartesian
n,kI

product is compact, so the image under matrix multiplication (which is


continuous) is also compct and therefore a closed bset of V

n,k


By definition of the quotient topology, it follows that p(S) is closed


in G k as desired.


There is of course a great deal more to say about Grassman manifolds.


The space G is in fact a manifold (as the terminology implies); it is a


manifold of dimension k(n - k).


n
It we replace IR throughout by iR , then there is the obvious inclusion


of n into n+l; it gives rise to an incllsionmap of Vn, into Vn+l k
.


This in turn induces a continuous injective map on the quotient spaces


i: G -G+, k


Since all the spaces involved are compact Hausdorff, we can thus consider


G to be a closed subspace of G If now we take thfe union of
n,k n+lk 
the spaces


Gk,k G+l,k ... Gn,k . )


one has the space of all k planes in IR3 . As you would expect, we give it


the coherent topology. Arid Theorem G.3 implies that this space is normals



