Normality of quotient spaces

ì

For a quotient space, the separation axioms--even the Hausdorff property-are difficult to verify. We give here three situations in which the quotient space is not only Hausdorff, but normal.

<u>Theorem G.1.</u> Let $p: X \rightarrow Y$ be a closed quotient map. If X is normal, then Y is normal.

<u>Proof</u>. First we show that if A is a subset of Y, and N is an open set of X containing $p^{-1}(A)$, then there is an open set U of Y containing A such that $p^{-1}(U)$ is contained in N.

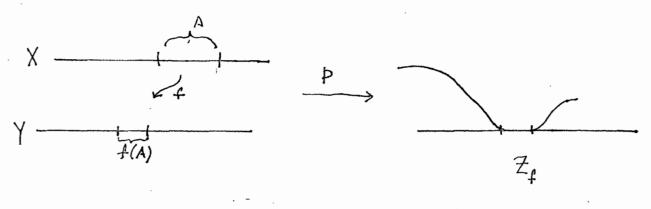
The proof is easy. The set C = X - N is closed. The set p(C) is closed and disjoint from A, so that the set U = Y - p(C) is an open set of Y that contains A. If x is a point of U, then $p^{-1}(x)$ contains no point of C, so that it lies in N; thus $p^{-1}(U)$ is contained in N.

Now we verify normality of Y. Since one-point sets are closed in X and p is a closed map, one-point sets are closed in Y. Now let A and B be disjoint closed sets of Y. Since p is continuous, $p^{-1}(A)$ and $p^{-1}(B)$ are disjoint closed sets of X. Choose disjoint open sets N_1 and N_2 of X containing them. Let U_1 and U_2 be open sets of Y containing A and B, such that $p^{-1}(U_1)$ lies in N_1 and $p^{-1}(U_2)$ lies in N_2 . Because N_1 and N_2 are disjoint, so are U_1 and U_2 , \Box

<u>Definition</u>. Let X and Y be disjoint spaces; let A be a closed subset of X; and let $f: A \rightarrow Y$ be a continuous function. We define the <u>adjunction space</u> Z_f to be the quotient space obtained from the union of X and Y by identifying each point a of A with the point f(a) and with all the points of $f^{-1}(f(a))$. Let $p: X \cup Y \rightarrow Z_f$ be the quotient map.

Now the map p/Y is a continuous injection of Y into Z_f . We show that it is also a closed map. If C is a closed set of Y, then $p^{-1}(p(C))$ equals the union of C and $f^{-1}(C)$. The set C is closed in Y, so the set $f^{-1}(C)$ is closed in A and hence closed in X. Therefore, $p^{-1}(p(C))$ is closed in XUY, so that p(C) is closed in Z_f , by definition of the quotient topology.

It now follows that p(Y) is a closed subspace of $Z_{f'}$, and that p(Y) is a homeomorphism of Y with p(Y).

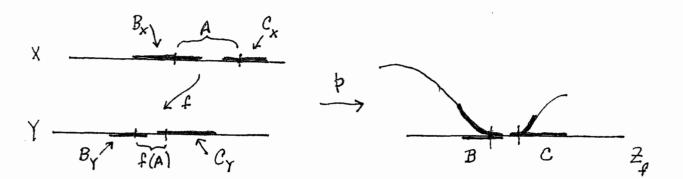


Theorem G.2. If X and Y are normal, then so is Z_f .

Proof. A direct proof, using the definition of normality, is a bit elaborate. (See [D], p. 145.) An easier proof uses the Tietze theorem, as we now show.

First, we note that Z_f is T_1 . Let z be a point of Z_f . If z belongs to p(Y), then $\{z\}$ is closed because one-point sets are closed in Y, and $p|Y: Y \rightarrow Z_f$ is a closed map. Otherwise, $p^{-1}(z)$ is a one-point set in X, and therefore closed; it follows from the definition of a quotient map that $\{z\}$ is closed.

Now let B and C be disjoint closed sets of Z_{f} . Let $B_{X} = p^{-1}(B) \wedge X$ and $C_{X} = p^{-1}(C) \wedge X$. Similarly, let $B_{Y} = p^{-1}(B) \wedge Y$ and $C_{Y} = p^{-1}(C) \wedge Y$.



Using normalilty of Y, choose a continuous function $g: Y \rightarrow [0,1]$ that equals 0 on B_v and 1 on C_v . Then define

h : AU
$$B_X U C_X \rightarrow [0,1]$$

by setting $h = g \circ f$ on A, and h = 0 on B_X , and h = 1 on C_X . Because each of these three sets is closed in X and h is unambiguously defined when two of the sets overlap, h is continuous, by the pasting lemma. Using normality of X and the Tietze theorem, extend h to a continuous function $k: X \rightarrow [0,1]$. Then g and k together define a continuous function from $X \cup Y$ into [0,1]; it induces a continuous function

$$F: Z_{f} \rightarrow [0,1]$$

on the quotient space that equals 0 on B and 1 on C. The sets $F^{-1}([0, \frac{1}{2}))$ and $F^{-1}((\frac{1}{2}, 1])$ are then disjoint open sets about B and C, respectively.

One application of adjunction spaces occurs in point-set topology, when one is studying absolute retracts. (See Exercise 8, p.224.) Another application occurs in algebraic topology, when one constructs a CW complex; we will discuss this application shortly.

<u>Definition</u>. Let X be a space and let $\{X_{\mathcal{A}}\}_{\mathcal{A}\in J}$ be a family of subspaces of X whose union is X. The topology of X is said to be <u>coherent</u> with the subspaces $X_{\mathcal{A}}$ if a set A is closed in X whenever $A \cap X_{\mathcal{A}}$ is closed in $X_{\mathcal{A}}$ for each \prec . (Or, equivalently, if a set U is open in X whenever $U \cap X_{\mathcal{A}}$ is open in $X_{\mathcal{A}}$ for each \prec .)

There is a strong connection between coherent topologies and quotient spaces. It is described as follows: To begin, let us give J the discrete topology and consider the product space $X \times J$. Then we consider the subspace of $X \times J$ that is the union of the subspaces $X_{\mathcal{A}} \times \{\mathcal{A}\}$, for all $\mathcal{A} \in J$. This space is called the <u>topological sum</u> (or sometimes the <u>disjoint union</u>) of the spaces $X_{\mathcal{A}}$. It is denoted $\sum X_{\mathcal{A}}$. If we project $X \times J$ onto $X_{\mathcal{A}}$ we obtain a continuous map

which maps each space $X \not \subset X$ by the obvious homeomorphism onto $X_{\mathcal{K}}$. The map p is a quotient map if and only if the topology of X is coherent with the subspaces $X_{\mathcal{K}}$. It follows that if X has the topology coherent with the subspaces $X_{\mathcal{K}}$, then a map $f: X \rightarrow Y$ is continuous if and only if each of the functions $f \mid X_{\mathcal{K}}$ is continuous.

<u>Theorem G.3.</u> Let X be a space that is the union of countably many closed subspaces X_i , for $i \notin Z_i$. Suppose the topology of X is coherent with these subspaces. If each X_i is normal, then so is X.

<u>Proof.</u> If p is a point of X, then $\{p\} \cap X_j$ is closed in X_i for each i, so $\{p\}$ is closed in X. Therefore X is a T_1 space.

Let A and B be closed disjoint sets in X. Define $Y_0 = A \boldsymbol{u} B$, and for n > 0, define

$$Y_n = A U B U X_1 U \dots U X_n$$
.

Define a continuous function $f_0: Y_0 \rightarrow [0,1]$ by letting it equal 0 on A and 1 on B. In general, suppose one is given a continuous function $f_n: Y_n \rightarrow [0,1]$. The space X_{n+1} is normal and $Y_n \cap X_{n+1}$ is closed in X_{n+1} . If g_n denotes the restriction of f_n to the subspace $Y_n \cap X_{n+1}$, we use the Tietze theorem to extend g_n to a continuous function $g: X_{n+1} \rightarrow [0,1]$. Because Y_n and X_{n+1} are closed subsets of Y_{n+1} , the functions f_n and g combine to define a continuous function

$$\mathbf{F}_{n+1}: \mathbf{Y}_{n+1} \rightarrow [0,1]$$

that is an extension of f_n . The functions f_n in turn combine to define a function $f: X \rightarrow [0,1]$ that equals 0 on A and 1 on B. <u>Because</u> X has the topology coherent with the subspaces X_n , the map f is continuous.

Example 1. The preceding theorem does not extend to uncountable coherent unions. Given an element \measuredangle of $S_{\underline{n}}$, let $X_{\underline{\lambda}}$ be the subspace consisting of all elements x of \Im such that $x \leq \measuredangle$. Then $X_{\underline{\lambda}}$ is a closed interval in $S_{\underline{n}}$, so it is compact.

The space $S_{\Lambda} \times \overline{S}_{\Lambda}$ is the union of the spaces $X_{\Lambda} \times \overline{S}_{\Lambda}$, each of which is compact Hausdorff and thus normal. We show that $S_{\Lambda} \times \overline{S}_{\Lambda}$, which is <u>not</u> normal, has the topology coherent with these subspaces.

Let U be a subset of $S_{\Lambda} \times \overline{S}_{\Lambda}$ such that $U \cap (X_{\Lambda} \times \overline{S}_{\Lambda})$ is open in this subspace, for each \mathcal{A} . Then the intersection

is open in $S_x \times \overline{S}_x$ for each \checkmark , and hence open in $S_x \times \overline{S}_x$. Since U is the union of the sets

 $Un(S_x \times \overline{S}_{p_x}),$ it is open in $S_x \times \overline{S}_{p_x}$, as desired. It is an interesting question to ask under what conditions coherent topologies exist. One has the following two theorems:

Theorem G.4. Let X be a set that is the union of the topological spaces $X_{\mathcal{L}}$, for $\mathcal{A} \in J$. If there is a topological space X_{T} having X as its underlying set, such that each $X_{\mathcal{L}}$ is a subspace of X_{T} , then there is a topological space X_{C} such that each $X_{\mathcal{L}}$ is a subspace of X_{C} and the topology of X_{C} is coherent with the subspaces $X_{\mathcal{L}}$. The topology of X_{C} is finer than that of X_{T} .

<u>Proof</u>. We define a set D to be closed in X_C if $D \cap X_d$ is closed in X_d for each α . It is immediate that \emptyset and X are closed. The required properties about unions and intersections follow from the equations

> $(D_1 \cup \dots \cup D_n) \cap X_{\mathcal{L}} = (D_1 \cap X_{\mathcal{L}}) \cup \dots \cup (D_n \cap X_{\mathcal{L}}),$ $(\bigcap_{D \in \mathcal{B}} D) \cap X_{\mathcal{L}} = \bigcap_{D \in \mathcal{B}} (D \cap X_{\mathcal{L}}),$

where $\,\delta\,$ is an arbitrary collection of closed sets.

Note that if E is closed in X_T , then $E \wedge X_d$ is closed in X_d for each \mathcal{A} , so that E is closed in X_C . Thus the topology of X_C is finer than the topology of X_T .

What else is there to prove? We must prove that each $X_{\mathcal{A}}$ is a subspace of X_{C} . Isn't this obvious? Not quite. First, note that if A is closed in X_{C} , then AAX_d is closed in X_{d} by definition. Conversely, suppose B is closed in $X_{\mathcal{A}}$. Because $X_{\mathcal{A}}$ is a subspace of X_{T} , we have $B = A \cap X_{d}$ for some set A closed in X_{T} . Because the topology of X_{C} is finer than that of X_{T} , the set A is also closed in X_{C} . Thus $B = A \cap X_{d}$ for some A closed in X_{C} , as desired. \square

Theorem G.5. Let X be a set that is the union of the topological spaces $X_{\mathcal{L}}$, for $\mathcal{L}\in J$. If for each pair of indices \mathcal{L}, β , the set $X_{\mathcal{L}} \cap X_{\beta}$ is closed in both $X_{\mathcal{L}}$ and X_{β} , and inherits the same topology from each of them, then X has a topology coherent with the subspaces $X_{\mathcal{L}}$. Each $X_{\mathcal{L}}$ is a closed set in X in this topology. Proof. Once again, we define a topological space X_C by declaring a set D to be closed in X_C if $D \wedge X_d$ is closed in X_d for each d. It is immediate that this is a topology on X.

We show that each space X_{χ} is a closed subspace of X_{C} . First, if A is closed in $X_{C'}$ then $A \cap X_{\chi}$ is closed in X_{χ} by definition of X_{C} . Conversely, let B be a closed set of X_{χ} ; we show B is closed in X_{C} . To do this, we must show that $B \cap X_{\beta}$ is closed in X_{β} for each β . Since B is closed in X_{χ} , the set $B \cap X_{\beta}$ is closed in $X_{\chi} \wedge X_{\beta}$ because the latter is a subspace of X_{χ} . Then $B \cap X_{\beta}$ is closed in X_{β} because $X_{\chi} \cap X_{\beta}$ is a closed subspace of X_{β} .

This theorem does not hold if the word "closed" is omitted from the hypothesis. There is an example of a set X that is the union of three spaces such that the intersection of any two of the spaces is a subspace of each of them; but there is no topology on X at all of which all three of the spaces are subspaces! (See [Mu], p. 213.)

Example 2. Consider $|\mathbb{R}^{\omega}$ in the product topology. Let \mathbb{R}^{n} denote the subspace of \mathbb{R}^{ω} consisting of all points $\underline{x} = (x_1, x_2, ...)$ such that $x_i = 0$ for i > n. Then one has the sequence of subspaces

 $\tilde{R}^1 \subset \tilde{R}^2 \subset \ldots,$

each of which is a closed subspace of the next. Their union is \mathbb{R}^{∞} , which by Theorem G.5 has a topology coherent with the subspaces \mathbb{R}^{n} . Theorem G.3 implies that \mathbb{R}^{∞} is normal in this topology.

Now $\mathbb{R}^{\mathfrak{S}^{n}}$ also has several other topologies as well, ones that it inherits as a subspace of $\mathbb{R}^{\mathfrak{S}^{n}}$ in its various topologies. The subset \mathbb{R}^{n} inherits its usual topology from each of these topologies on $\mathbb{R}^{\mathfrak{S}^{n}}$. Hence Theorem G.4 also applies to show that $\mathbb{R}^{\mathfrak{S}^{n}}$ has a topology coherent with the subspaces \mathbb{R}^{n} ; this theorem also implies that the coherent topology is finer than each of these topologies on $\mathbb{R}^{\mathfrak{S}^{n}}$. Since the one derived from the box topology is the finest of these, one has the following:

<u>Challenge</u> question: Is the topology on \mathbb{R}^{ω} that is coherent with the subspaces \mathbb{R}^{n} the same as the topology that \mathbb{R}^{ω} inherits as a subspace of \mathbb{R}^{ω} in the box topology?

Final remark. Here is a quick outline of how these notions are used in algebraic topology. (See §38 of [Mu] for more details.)

The <u>unit ball</u> in \mathbb{R}^n is the subset of \mathbb{R}^n consisting of all points whose euclidean distance from the origin is less than or equal to one; the <u>unit sphere</u> consists of those points for which this distance equals one. These spaces are denoted \mathbb{B}^n and \mathbb{S}^{n-1} , respectively. If there is a homeomorphism $h: \mathbb{B}^n \to \mathbb{C}$, then C is called an <u>n-cell</u>, and we denote by EdC the subspace $h(\mathbb{S}^{n-1})$.

There is a class of spaces that is very important in algebraic topology called <u>CW complexes</u>; they were invented by J.H.C.Whitehead. In algebraic topology, one defines for a given space a number of groups, such as the homology groups $H_n(X)$, the cohomology groups $H^n(X)$, and the homotopy groups $\mathcal{M}'_n(X)$. Defining is one thing, but computing (or even getting useful information) is another. The structure of CW complex gives one a tool for dealing with these groups. CW complexes are quite versatile--many useful spaces, such as the Grassman manifolds we shall mention shortly, have the structure of a CW complex. On the other hand, if one has some prescribed groups and wants to find a space for which the homology groups, say, are isomorphic to these groups, one can construct a CW complex that will do the job.

A CW complex is constructed as follows: One begins with a discrete space, which we call X^0 . Then one takes a collection of disjoint l-cells C_d , and a family of continuous maps $f_d : \operatorname{Bd} C_d \to X^0$. One forms the topological sum $\int_{-\infty}^{1} C_d$, and uses the maps f_d to define a continuous map $f : \int_{-\infty}^{\infty} \operatorname{Bd} C_d \to X^0$. One forms the adjunction space obtained from $X^0 \cup \int_{-\infty}^{\infty} C_d$ by means of this map. This space is denoted X^1 ; it is called a 1-dimensional CW complex.

So far, so good. Now one takes a collection of disjoint 2-cells $D_{,\beta}$ and a continuous map $g: \mathcal{L} Bd D_{,\beta} \rightarrow \chi^1$, and forms an adjunction space from $\mathcal{L} D_{,\beta}$ and χ^1 by means of this map. This space is denoted χ^2 and is a 2-dimensional CW complex.

It is clear how to continue. One has eventually an n-dimensional CW complex x^n , for each n. Are we finished? No. Recall that in the construction of the adjunction space x^n , the projection map defines a homeomorphism of x^{n-1} with a closed subspace of x^n . We normally identify x^{n-1} with this closed subspace of x^n .

G.7

.With this convention, we now have a sequence of spaces

$$x^0 \subset x^1 \subset \ldots \subset x^n \subset \ldots$$

each of which is a closed subspace of the next. Their union is given the topology coherent with these subspaces; it is called an (infinite-dimensional) CW complex.

In order to work with the space we obtain, it is <u>essential</u> that it be a Hausdorff space. (Basically, so we know that compact sets are closed.) The theorems we have proved in this section do much more than that; they show that every CW complex is <u>normal.</u>

Final final remark. We have talked a lot about how quotient spaces are used in algebraic topology. Let us close by giving an example of how they are used in differential geometry.

A very important space in differential geometry is the space $G_{n,k}$ of k-dimensional vector subspaces of \mathbb{R}^n . It is called the <u>Grassman manifold</u> of k-planes in n-space. The space $G_{n,1}$ is thus the space of all lines through the origin in \mathbb{R}^n . It is fairly intuitive what one means by saying that two k-planes are "close" to one another, but how does one topologize this space rigorously? One topologizes it as a quotient space. To be specific, let $V_{n,k}$ be the set of all k by n matrices, where $k \leq n$, whose rows are orthonormal vectors. Such a matrix satisfies the equation $AA^t = I_k$. There is an obvious topology on this set, for it can be considered as a subspace of \mathbb{R}^{kn} . In this topology, it is compact, for it is closed and bounded, as the equation $AA^t = I_k$ shows. Let $p: V_{n,k} \rightarrow G_{n,k}$ be the map that sends each matrix to the k-dimensional vector subspace of \mathbb{R}^n that is spanned by its rows. We topologize $G_{n,k}$ by requiring p to be a quotient map.

Because p is continuous, it is immediate that $G_{n,k}$ is compact. The next question is this: Is it Hausdorff? The answer is "yes," because the map p is in fact a closed map, so Theorem G.1 applies.

To show p is closed, we examine first what the relationship is between two matrices A and B whose rows span the same vector subspace of \mathbb{R}^{n} . This occurs precisely when each row of A equals a linear combination of the rows of B, and conversely. This statement can be expressed by the matrix equation A = CB, where C is a nonsingular k by k matrix. It follows that C satisfies the equation $CC^{t} = I_{k}$, which means that C belongs to $V_{k,k}$. A quick computation with matrices verifies this fact: The equation A = CB, along with the equations $AA^{t} = BB^{t} = I_{k}$, implies that

$$AB^{t} = C$$
 and $I_{k} = C(BA^{t})$.

The first equation gives us, by transposing, the equation $BA^{t} = C^{t}$; substituting this result into the second equation gives us the equation

$$I_k = CC^t$$
.

Now we show that p is a closed map. If S is a closed set in $v_{n,k'}$ then the set $p^{-1}(p(S))$ is the set of all matrices of the form CA, where C belongs to $v_{k,k}$ and A is an element of S. Thus $p^{-1}(p(S))$ is the image of $v_{k,k} \times S$ under the map given by matrix multiplication. Now $v_{k,k}$ is compact and S is compact (being closed in $v_{n,k}$). Their cartesian product is compact, so the image under matrix multiplication (which is continuous) is also compact and therefore a closed subset of $v_{n,k}$. By definition of the quotient topology, it follows that p(S) is closed in $G_{n,k}$, as desired.

There is of course a great deal more to say about Grassman manifolds. The space $G_{n,k}$ is in fact a manifold (as the terminology implies); it is a manifold of dimension k(n - k).

It we replace \mathbb{R}^n throughout by $\widetilde{\mathbb{R}}^n$, then there is the obvious inclusion of $\widetilde{\mathbb{R}}^n$ into $\tilde{\mathbb{R}}^{n+1}$; it gives rise to an inclusion map of $V_{n,k}$ into $V_{n+1,k}$. This in turn induces a continuous injective map on the quotient spaces

$$: G_{n,k} \xrightarrow{G_{n+1,k}} G_{n+1,k}$$

Since all the spaces involved are compact Hausdorff, we can thus consider $G_{n,k}$ to be a closed subspace of $G_{n+1,k}$. If now we take the union of the spaces

$$G_{k,k} \subset G_{k+1,k} \subset \cdots \subset G_{n,k} \subset \cdots$$

one has the space of all k planes in \mathbb{R}^{∞} . As you would expect, we give it the coherent topology. And Theorem G.3 implies that this space is normal!