Tychonoff via well-ordering,

We present a proof of the Tychonoff theorem that uses the well-ordering theorem rather than Zorn's lemma. It follows the outline of Exercise 5 of $\S 37$.

Lemma H.1. Let \mathcal{A} be a collection of basis elements for the topology of the product space $X X Y$, such that no finite subcollection of A covers $X \times Y$.

If X is compact, there is a point $X \in X$ such that no finite subcollection of A covers the slice $\{x\} \times Y$.

Proof. Suppose there is no such point x. Then, given a point x of X, one can choose finitely many elements of A that cover the slice $\{x\} \times y$. Then, as in the proof of the tube lemma, one can find a neighborhood U_{x} of x such that these elements of A cover $U_{X} X Y$. Because X is compact, we can cover X by finitely many such neighborhoods $U_{X} ;$ then all of $X X Y$ can be covered by finitely many elements of A.

Theorem H. 2. Products of compact spaces are compact.
Proof. Let $\left\{X_{\alpha}\right\}_{\alpha \in J}$ be a family of compact spaces; let X be their product, $X=\prod_{\alpha \in J} X_{\alpha} ;$
and let $\pi_{\alpha}: X \rightarrow X_{\alpha}$ be the projection map. Well-order J in such a way that it has a largest element.

Step 1. Left β be an element of J; ard suppose that a point p_{i} of x_{i} has been specified for all $i<\beta$. Define z_{β} to be the following subspace of X :

$$
z_{\beta}=\left\{\underline{x} \mid \pi_{i}(\underline{x})=p_{i} \text { for } i<\beta\right\}
$$

Then for each $\alpha<\beta$, define Y_{α} to be the following subspace of x :

$$
Y_{\alpha}=\left\{\underline{x} \mid \pi_{i}(x)=p_{i} \quad \text { for } \quad i \leq \alpha\right\} .
$$

Note that as α increases, the space Y_{α} shrinks, and that Z_{β} equals the intersection of the spaces Y_{α} for all $\alpha<\beta$.

We show that if A is a finite collection of basis, elements for X that covers Z_{β}, then \mathcal{A} actually covers the larger space Y_{α}, for some $\alpha<\beta$.

If β has an immediate predecessor in J, let α be that immediate predecessor. Then $Y_{\alpha}=Z_{\beta}$, arid the result is trivial.

Now suppose that β has no immediate predecessor. Fir each element A of A, let J_{A} denote the set of those indices $i<\beta$ for which $\pi_{i}(A) \neq X_{i}$; then J_{A} is a finite set. The union of the sets $J_{A^{\prime}}$ for all A in A, is also finite; let α be the largest element of this union. Then $\alpha<\beta$, ard $\Pi_{i}(A)=x_{i}$ whenever i is an index such that $\alpha<i<\beta$ and A is an element of A.

We show that A covers Y_{α}. Given $x \in Y_{\alpha}$, we show that it lies in an element of \mathcal{A}. We know that $T_{i}(\underline{x})=p_{i}$ for $i \leqslant \alpha$. Define a point y of X by setting

$$
\begin{aligned}
& \pi_{i}(\underline{y})=p_{i} \quad \text { fer } \quad i<\beta, \text { and } \\
& \pi_{i}(\underline{y})=\pi_{i}(\underline{x}) \text { for } i \geq \beta
\end{aligned}
$$

Then y belongs to Z_{β}, sc that y lies in some element A of A. We show this element of A also contains x.

Since A is a basis element, we need only to show that $\Pi_{i}(\underline{x}) \in \Pi_{i}(\bar{A})$ for all $i \in J$. Since $y \in A$, we know that $\pi_{i}(y) \in \pi_{i}(A)$ for all i. We also know that $\Pi_{i}(\underline{x})=\pi_{i}(y)$ for $i \leqslant \alpha$ and for $i \geqslant \beta$. And finally, for $\alpha<i<\beta$ We know that $\pi_{i}(\underline{x}) \in \pi_{i}(A)$ because in this case $\pi_{i}(A)=x_{i}$.

Step 2. Assume that \mathcal{A} is a collection basis elements for X such that no finite subcollection covers x. We show that A itself does not cover X . The theorem follows.

We shall choose points $p_{i} \in X_{j}$, for all i, such that none of the spaces Y_{α}, for $\alpha \in J$, can be finitely covered by A. When α is the largest element of J, the space Y_{R} is a one-point space. Since it cannot be finitely covered by \mathcal{A}, it is not contained in any element of A.

To begin, let of be the smallest element of J. We write X in the form

$$
x_{\alpha} \times \prod_{i \neq \alpha} x_{i}
$$

Since X cannot be finitely covered by A, and since X_{α} is compact, the preceding lemma implies that there is a point $p_{\alpha} \in X_{\alpha}$ such that the space

$$
y_{\alpha}=\left\{p_{\alpha}\right\} \times \pi_{i \neq \alpha} x_{i}
$$

cannot be finitely covered by \mathcal{A}.

Now suppose p_{i} is defined for all $i<\beta$, such that for each $\alpha<\beta$, the space Y_{α} cannot be finitely covered by \mathcal{A}. We seek to define the point p_{β}. Since none of the spaces Y_{α}, for $\alpha<\beta$, can be finitely covered by \mathcal{A}, Step 1 implies that z_{β} cannot be finitely covered by \mathcal{A}. Lett us write Z_{β} in the form

$$
z_{\beta}=\pi_{i<\beta}\left\{_{i}\right\} \times x_{\beta} \times \pi_{i>\beta} x_{i} .
$$

Because X_{β} is compact, the lemma tells us there is a point $p_{\beta} \in X_{\beta}$ such that the space

$$
\pi_{i<\beta}\left\{p_{i}\right\} \times\left\{p_{\beta}\right\} \times \Pi_{i>\beta} x_{f}
$$

cannot be finitely covered by \mathcal{A}. This is just the space Y_{β}.
By the general principle of recursive definition (see p.72), p_{i} is defined for all i. Note of course that we have used the axiom of choice repeatedly to choose the points $p_{i} \cdot \square$

