Tychonoff via well-ordering,

We present a proof of the Tychonoff theorem that uses the well-ordering theorem rather than Zorn's lemma. It follows the outline of Exercise 5 of §37.

Lemma H.1. Let \mathcal{A} be a collection of basis elements for the topology of the product space X x Y, such that no finite subcollection of \mathcal{A} covers X x Y.

If X is compact, there is a point $x \in X$ such that no finite subcollection of \mathcal{A} covers the slice $\{x\} \times Y$.

<u>Proof</u>.Suppose there is no such point x. Then, given a point x of X, one can choose finitely many elements of \mathcal{A} that cover the slice $\{x\} \times Y$. Then, as in the proof of the tube lemma, one can find a neighborhood U_x of x such that these elements of \mathcal{A} cover $U_x \times Y$. Because X is compact, we can cover X by finitely many such neighborhoods U_x ; then all of XXY can be covered by finitely many elements of \mathcal{A} .

Theorem H.2. Products of compact spaces are compact.

Proof. Let $\{X_{A}\}_{A \in J}$ be a family of compact spaces; let X be their product, X = $\prod_{A \in J} X_{A}$;

and let $\widetilde{\mathcal{N}}_{\mathcal{L}}$: $X \rightarrow X_{\mathcal{L}}$ be the projection map. Well-order J in such a way that it has a largest element.

Step 1. Let β be an element of J; and suppose that a point p_i of X_i has been specified for all $i < \beta$. Define Z_β to be the following subspace of X:

$$\begin{split} \mathbb{Z}_{\beta} &= \left\{ \underline{x} \, \big| \, \pi_{i}(\underline{x}) = p_{i} \text{ for } i < \beta \right\} \; . \end{split}$$
Then for each $\mathcal{A} < / \mathcal{S}$, define $\mathbb{Y}_{\mathcal{A}}$ to be the following subspace of X: $\mathbb{Y}_{\mathcal{A}} &= \left\{ \underline{x} \, \big| \, \pi_{i}(\underline{x}) = p_{i} \text{ for } i \leq \mathcal{A} \right\} \; . \end{split}$

Note that as \checkmark increases, the space Y_{λ} shrinks, and that Z_{β} equals the intersection of the spaces Y_{λ} for all $\checkmark < \beta$.

We show that if \mathcal{A} is a finite collection of basis elements for X that covers Z_{β} , then \mathcal{A} actually covers the larger space Y_{χ} , for some $\mathscr{L} < \beta$.

If β has an immediate predecessor in J, let α be that immediate predecessor. Then $Y_{\alpha} = Z_{\beta}$, and the result is trivial.

Now suppose that β has no immediate predecessor. For each element A of \mathcal{A} , let J_A denote the set of those indices $i < \beta$ for which $\mathfrak{N}_i(A) \neq X_i$; then J_A is a finite set. The union of the sets J_A , for all A in \mathcal{A} , is also finite; let \checkmark be the largest element of this union. Then $\measuredangle < \beta$, and $\mathfrak{N}_i(A) = X_i$ whenever i is an index such that $\measuredangle < i < \beta$ and A is an element of \mathcal{A} .

We show that \mathcal{A} covers $Y_{\mathcal{A}}$. Given $\underline{x} \in Y_{\mathcal{A}}$, we show that it lies in an element of \mathcal{A} . We know that $\Pi_i(\underline{x}) = p_i$ for $i \leq \mathcal{A}$. Define a point \underline{y} of \underline{X} by setting

$$\begin{aligned} &\Pi_{i}(\underline{y}) = P_{i} \quad \text{for } i < \beta, \text{ and} \\ &\Pi_{i}(\underline{y}) = \Pi_{i}(\underline{x}) \quad \text{for } i \geq \beta. \end{aligned}$$

Then \underline{y} belongs to Z_{β} , so that \underline{y} lies in some element A of \mathcal{A} . We show this element of \mathcal{A} also contains \underline{x} .

Since A is a basis element, we need only to show that $\pi_i(\underline{x}) \in \pi_i(A)$ for all i $\in J$. Since $\underline{y} \in A$, we know that $\pi_i(\underline{y}) \in \pi_i(A)$ for all i. We also know that $\pi_i(\underline{x}) = \pi_i(\underline{y})$ for $i \leq d$ and for $i \geq \beta$. And finally, for $d \leq i \leq \beta$ we know that $\pi_i(\underline{x}) \in \pi_i(A)$ because in this case $\pi_i(A) = X_i$.

Step 2. Assume that \mathcal{A} is a collection of basis elements for X such that no finite subcollection covers X. We show that \mathcal{A} itself does not dover X. The theorem follows.

We shall choose points $p_i \in X_j$, for all i, such that none of the spaces Y_d , for $A \in J$, can be finitely covered by A. When A is the largest element of J, the space Y_k is a one-point space. Since it cannot be finitely covered by A, it is not contained in any element of A.

To begin, let \checkmark be the smallest element of J. We write X in the form

Since X cannot be finitely covered by A, and since X_{λ} is compact, the preceding lemma implies that there is a point $p_{\lambda} \in X_{\lambda}$ such that the space

$$Y_{\alpha} = \{p_{\alpha}\} \times \Pi_{i \neq \alpha} X_{i}$$

cannot be finitely covered by \mathcal{A} .

Now suppose p_i is defined for all $i < \beta$, such that for each $\ll \beta$, the space $Y_{\mathcal{A}}$ cannot be finitely covered by \mathcal{A} . We seek to define the point p_{β} . Since none of the spaces $Y_{\mathcal{A}}$, for $\ll \beta$, can be finitely covered by \mathcal{A} , Step 1 implies that Z_{β} cannot be finitely covered by \mathcal{A} . Let us write Z_{β} in the form

$$z_{\beta} = \prod_{i < \beta} \{p_i\} \times x_{\beta} \times \overline{\Pi}_{i > \beta} x_{i}$$

Because X_{β} is compact, the lemma tells us there is a point $p_{\beta} \in X_{\beta}$ such that the space

$$\mathcal{T}_{i < \beta} \{ p_i \} \times \{ p_{\beta} \} \times \mathcal{T}_{i > \beta} x_i$$

cannot be finitely covered by \mathcal{A} . This is just the space $Y_{\mathcal{B}}$.

1

By the general principle of recursive definition (see p.72), p_i is defined for all i. Note of course that we have used the axiom of choice repeatedly to choose the points p_i . \Box