The so-called Prüfer manifold is a space that is locally 2-euclidean and Hausdorff, but not normal. In discussing it, we follow the outline of Exercise 6 on p. 317.

<u>Definition</u>. Let A be the following subspace of \mathbb{R}^2 :

$$A = \{x, y\} | x > 0\}.$$

Given a real number c , let B_{c} be the following subspace of \Re^{3} :

$$B_{c} = \{ x, y, c \} \mid x \leq 0 \}.$$

Let X be the set that is the union of A and all the spaces $B_{c'}$ for c real. Topologize X by taking as a basis all sets of the following three types:

(i) U, where U is open in A.

- (ii) V, where V is open in the subspace of ${}^{\rm B}_{\rm C}$ consisting of points with x<0.
- (iii) For each open interval I = (a,b) of \mathbb{R} , each real number c, and each $\mathcal{E} > 0$, the set $A_C(I, \mathcal{E}) \vee B_C(I, \mathcal{E}) = \mathbb{U}_C(\mathfrak{P}, \mathcal{E})$, where $A_C(I, \mathcal{E}) = \{(x, y) \mid \int 0 < x < \mathcal{E} \text{ and } c + ax < y < c + bx\},$ $B_C(I, \mathcal{E}) = \{(x, y, c) \mid -\mathcal{E} < x \leq 0 \text{ and } a < y < b\}.$

The space X is called the "Prüfer manifold."

Let us sketch what the basis elements of type (iii) look like. Given c, I, and \mathcal{E} , the basis $U_{C}(I, \mathcal{E})$ is the union of the two shaded figures in the figure.

It is easy to check that these sets form a basis for a topology. The intersection of a set of type (i) with any other basis element is empty or is open in A, and the intersection of a set of type (ii) with any other basis element is empty or is open in the subspace x < 0 of B_c . Finally, the intersection of the sets $U_c(I, \xi)$ and $U_d(I', \xi')$ is open in A if $c \neq d$; it is empty if c = d and I is disjoint from I'; and finally if c = d and I intersects I', it equals the set

$$U_{\alpha}(I \wedge I', \min(\mathcal{E}, \mathcal{E}')).$$

We show that X is locally 2-euclidean. For fixed c, the set $B_{c} \cup A$ is a union of basis elements, and therefore is open in X. Surprisingly, it is actually homeomorphic to $(\mathbb{R}^{2} \ ! \ Consider \ the map \ f_{c} : \mathbb{R}^{2} \rightarrow X \ given by$

$$f_{C}(x,y) = (x,y,c) \text{ for } x \leq 0,$$

$$f_{C}(x,y) = (x, c + xy) \text{ for } x > 0.$$

The map f_c carries the subspace of \mathbb{R}^2 consisting of points (x,y) with $x \leq 0$ bijectively on \mathbf{f}_{B_c} , and it carries the subspace consisting of points with x > 0 bijectively onto A (Each vertical line $x = x_0$ is carried bijectively onto itself).

To show that f_c is a homeomorphism, we note that we can take as basis for R^2 all open sets lying the the half-plane x < 0, all open sets lying in the half-plane x > 0, and all open sets of the form $(-\varepsilon, \varepsilon) \times (a, b)$. Each of these is mapped by f_c onto one of the basis elements for X; and conversely. [The open set $(-\varepsilon, \varepsilon) \times (a, b)$ is mapped onto $U_c((a, b), \varepsilon)$.] The map f_c is pictured in the accompanying figure.

It follows that X is locally 2-euclidean, since it is covered by the open sets $B_{c} u A$, each of which is homeomorphic to μ^{2} .

We show that X is Hausdorff. The only case where some care is required is the case where the two distinct points are points of the "edges" of the half-spaces B_c . If they belong to the same half-space B_c , then they are of the form $(0, y_1, c)$ and $(0, y_2, c)$. In this case, we need merely choose disjoint intervals I_1 and I_2 about y_1 and y_2 , respectively; then the basis elements. $U_c(I_1, \mathfrak{E})$ and $U_c(I_2, \mathfrak{E})$ are disjoint (for any \mathfrak{E}). Now consider two points of the form $(0, y_1, c)$ and $(0, y_2, d)$, where $c \neq d$. Choose an open interval I = (a, b) containing both y_1 and y_2 . Then if \mathfrak{E} is sufficiently small, the basis elements $U_c(I, \mathfrak{E})$ and $U_d(I, \mathfrak{E})$ are disjoint. [See the accompanying figure. Assuming d < c, one chooses \mathfrak{E} so that $\mathfrak{E}(b-a) < (c-d)$, so that $d + \mathfrak{E}b < c + \mathfrak{E}a$.]

Finally, we show that X is not normal. The proof follows a familiar pattern. Let L be the subspace of X consisting of all points of the form (0,0,c). It is closed in X; and it has the discrete topology since each basis element of type (iii) intersects L in at most a single point. One show repeats the argument given in Example 3 of §31, which showed that IR_{χ}^2 is not normal. If X were normal, then for every subset C of L, one could choose disjoint open sets U_C and V_C of X containing C and L - C, respectively. Letting D be the set of points of A having rational coordinates, one defines $\Theta: \not P(L) \rightarrow \not P(D)$ by setting

J.3

One shows readily that Θ is injective; then one derives a contradiction from cardinality considerations, since L is uncountable and D is countable.