The Prüfer Manifold.
. The so -called Prüfer manifold is a space that is locally 2-euclidean and Hausdorff, but not normal. In discussing it, we follow the outline of Exercise 6 on p. 317.

Definition. Let A be the following subspace of \mathbb{R}^{2} :

$$
A=\{(x, y) \mid x>0\} .
$$

Given a real number c, let B_{C} be the following subspace of \mathbb{R}^{3} :

$$
B_{C}=\{(x, y, c) \mid x \leq 0\} .
$$

Let X be the set that is the union of A and all the spaces B_{c} for c real. Topologize X by taking as a basis all sets of the following three types:
(i) U, where U is open in A.
(ii) V, where V is open in the subspace of B_{C} consisting of points with $\mathrm{x}<0$.
(iii) For each open interval $I=(a, b)$ of $\mathbb{R}_{\text {, }}$ each real number c, and each $\varepsilon>0$, the set $A_{C}(I, \varepsilon) \cup B_{C}(I, \varepsilon)=U_{C}\left(\frac{\text { S }}{}, \varepsilon\right)$, where $A_{c:}(I, \varepsilon)=\left\{(x, y), \int 0<x<\varepsilon\right.$ ard $\left.c+a x<y<c+b x\right\}$, $B_{C}(I, \varepsilon)=\{(x, y, C) \mid-\varepsilon<x \leqslant 0$ and $a<y<b\}$.
The space X is called the "Prüfer manifold."

Let us sketch what the basis elements of type (iii) look like. Given c, I, and ε, the basis $U_{C}(I, \Sigma)$ is the union of the two shaded figures in the figure.

It is easy to check that these sets form a basis for a topology. The intersection of a set of type (i) with any other basis element is empty or is open in A, ard the intersection of a set of type (ii) with any other basis element is empty or is open in the subspace $x<0$ of B_{C}. Finally, the intersection of the sets $U_{C}(I, \varepsilon)$ ard $U_{d}\left(I^{\prime}, \varepsilon^{\prime}\right)$ is open in A if $c \neq d$; it is empty if $c=d$ and I is disjoint from I '; and finally if $c=d$ and I intersects I ', it equals the set

$$
U_{C}\left(I \cap I^{\prime}, \min \left(\varepsilon, \varepsilon^{\prime}\right)\right) .
$$

We show that X is locally 2-euclidean. For fixed C, the set $B_{C} \cup A$ is a union of basis elements, and therefore is open in X. Surprisingly, it is actually homeomorphic to \mathbb{R}^{2} ! Consider the map $f_{C}: \mathbb{R}^{2} \rightarrow X$ given by

$$
\begin{aligned}
& f_{C}(x, y)=(x, y, c) \text { for } x \leq 0 \\
& f_{c}(x, y)=(x, C+x y) \text { for } x>0
\end{aligned}
$$

The map f_{C} carries the subspace of \mathbb{R}^{2} consisting of points (x, y) with $x \leq 0$ bijectively onto B_{c} :' and it carries the subspace consisting of points with $x>0$ bijectively onto A (Each vertical line $x=x_{0}$ is carried bijectively onto itself).

To show that f_{c} is a homeomorphism, we note that we can take as basis for \mathbb{R}^{2} ail open sets lying the the half-plane $x<0$, all open sets lying in the half-plane $x>0$, and all open sets of the form $(-\varepsilon, \varepsilon) \times(a, b)$. Each of these is mapped by f_{C} onto one of the basis elements for X; and conversely. [The open set $(-\varepsilon, \varepsilon) \times(a, b)$ is mapped onto $\left.U_{C}((a, b), \varepsilon).\right]$ The map f_{G} is pictured in the accompanying figure.

It follows that X is locally 2-euclidean, since it is covered by the open sets $B_{c} \cup A_{r}$ each of which is homeomorphic to \mathbb{R}^{2}.

B_{C}

A

We show that X is Hausdorff. The only case where some care is required is the case where the two distinct points are points of the "edges" of the half-spaces B_{c}. If they belong to the same half-space B_{C}, then they are of the form $\left(0, Y_{1}, c\right)$ and $\left(0, y_{2}, c\right)$. In this case, we need merely choose disjoint intervals I_{1} and I_{2} about y_{1} and y_{2}, respectively; then the basis elements. $U_{c}\left(I_{1}, \varepsilon\right)$ and $U_{C}\left(I_{2}, \varepsilon\right)$ are disjoint (for any ε). Now consider two points of the form $\left(0, y_{1}, c\right)$ and $\left(0, Y_{2}, d\right)$, where $c \neq d$. Choose an open interval $I=(a, b)$ containing both Y_{1} and Y_{2}. Then if ε is sufficiently small, the basis elements $U_{C}(I, \varepsilon)$ ard $U_{d}(I, \varepsilon)$ are disjoint. [see the accompanying figure. Assuming $d<c$, ore chooses ε so that $\varepsilon(b-a)<(c:-d)$, so that $\left.d+\varepsilon b<c+\varepsilon a_{0}\right]$

Finally, we show that X is not normal. The proof follows a familiar pattern.
Let L be the subspace of X consisting of all points of the form $(0,0, c)$.
It is closed in X; and it has the discrete topology since each basis element of type (iii) intersects L in at most a single point. One show repeats the argument given in Example 3 of 831 , which showed that \mathbb{R}_{l}^{2} is not normal. If X were normal, then for every subset C of L, one could choose disjoint open sets U_{C} ard V_{C} of X containing C and $L-C$, respectively. Letting D be the set of points of A having rational coordinates, one defines $\theta: f(L) \rightarrow f(D)$ by setting

$$
\begin{aligned}
& \theta(C)=D \cap U_{C}, \\
& \theta(\varnothing)=\varnothing, \\
& \theta(\mathrm{L})=D .
\end{aligned}
$$

One shows readily that Θ is injective; then one derives a contradiction from cardinality considerations, since L is uncountable and D is countable. \square

