The Long Line

We follow the outline of Exercise 12 of §24.

Let L denote the set $S_{n,x}[0,1)$, in the dictionary order. Let \swarrow_0 denote the smallest element of S_n . Give L the order topology.

Lemma C.1. Let \measuredangle be a point of $S_{\underline{D}}$ different from \measuredangle_0 . Then the interval $[\measuredangle_0 \times 0, \measuredangle \times 0]$ of L has the order type of [0,1].

<u>Proof</u>. Note that the proof is trivial if \mathscr{A} is the immediate successor of \mathscr{A}_0 in S_L.

Suppose the lemma holds for all $\measuredangle < \beta$. We show it holds for β . If β has an immediate predecessor \measuredangle_1 , the proof is easy. The interval $[\measuredangle_0 \times 0, \measuredangle_1 \times 0]$ of L has the order type of [0,1] by hypothesis. The interval $[\measuredangle_1 \times 0, \beta \times 0]$ of L equals $(\measuredangle_1 \times [0,1)) \cup \{\beta \times 0\}$, so it has the order type of [0,1], and also of [1,2]. Their union has the order type of $[0,1] \cup [1,2] = [0,2]$, which of course has the order type of [0,1].

If β has no immediate predecessor, there is an increasing sequence $\alpha_1, \alpha_2, \ldots$ of points of S whose supremum is β . Assume $\alpha_1 > \alpha_0$ for convenience. We show that for each i the interval $[\alpha_i \times 0, \alpha_{i+1} \times 0]$ of L has the order type of [0,1]. The interval $[\alpha_0 \times 0, \alpha_{i+1} \times 0]$ has the order type of [0,1] by hypothesis; if $\alpha_i \times 0$ corresponds to the real number c of [0,1] under the order-preserving bijection, then $[\alpha_i \times 0, \alpha_{i+1} \times 0]$ has the order type of [c,1], which of course has the order type of [0,1].

Finally, we note that the interval

 $J = [\mathcal{K}_0 \times 0, \beta \times 0]$

of L can be written as the union

$$[\ll_0^{\times 0}, \ll_1^{\times 0}] \cup [\ll_1^{\times 0}, \ll_2^{\times 0}] \cup \dots \cup [\ll_i^{\times 0}, \ll_{i+1}^{\times 0}] \cup \dots$$

of intervals of L. There is an order-preserving correspondence of this union with the union

 $[0,1] \cup [1,2] \cup \ldots \cup [i, i+1] \cup \ldots$

of intervals of βR . The latter union equals $[0, +\infty)$, which has the order type of [0,1). When we adjoin the point $\beta \times 0$ to J, we obtain a set with the order type of [0,1].

Definition. Let L' be the subspace $L - \{ \mathcal{A}_0 \times 0 \}$ of L; it is called the Long Line.

<u>Theorem C.2.</u> The long line is a path-connected linear continuum, every point of which has a neighborhood homeomorphic to an open interval of R. It is not metrizable.

<u>Proof.</u> Let x be a point of L with $x \neq \measuredangle_0 \times 0$. Choose an element \measuredangle of $\underline{S}_{\underline{n}}$ so that $x < \checkmark \times 0$. Then x lies in the open interval $(\measuredangle_0 \times 0, \checkmark \times 0)$ of L, which has the order type of the open interval (0,1) of \mathbb{R} .

The fact that L' is a linear continuum follows from Ex. 6 of §24. The result of the preceding paragraph shows that L' is the union of the open intervals $(\not\prec_0 \times 0, \not\prec \times 0)$ of L, each of which is path connected; since they have the point $\not\prec_0 \times \frac{1}{2}$ in common, L' is path connected.

Now let \checkmark be the immediate successor of \nsim_0 in S_A. We show that the ray $R = [\checkmark X 0, +\infty)$ of L' is limit point compact but not compact. It follows that R is not metrizable, so neither is L'.

The fact that R is not compact follows from the fact that the covering of L' by the open sets $[\measuredangle \times 0, \beta \times 0)$ with $\beta > \measuredangle$ has no finite (or even countable) subcovering. To show R is limit point compact, it suffices to show that every countably infinite set S in R has a limit point. And this is easy: The set of first coordinates of points of S has an upper bound in S_{\pounds} . If β is the immediate successor of this upper bound, then S is a subset of the interval $[\measuredangle \times 0, \beta \times 0]$ of L'. Since L' is a linear continuum, this interval is compact; therefore S has a limit point. \Box