Normality of Linear Continua

Treorem E.1. Every linear continuum X is normal in the order topology.

Proof. It suffices to consider the case where X has no largest element and no smallest element. For if X hes a smallest X_{0} buit no largest, we can form a new ordered set Y by taking the disjoint union of $(0,1)$ and X, and declaring every element of (0,1) to be less than every element of X. The ordered set Y is a linear continum with no largest or smallest. Sdince X is a closed subspace of Y, normality of Y implies normality of X. The other cases are similar.

So suppose X heis no largest or smallest. We follow the outline of Exercise 8 of $\S 32$.

Step 1. Le:t C ke a nonempty closed subset of X. We show that each component of $X-C$ häs the form $(c,+\infty)$ or $(-\infty, c)$ or ($\left.c, c^{\prime}\right)$, where C ard C^{\prime} are points of C.

Given a point x of $X-C$, let us take the union U of all open intervals (a_{μ}, b_{α}) of X that contain x and lie in $X-C$. Then U is connected. We show that U has one of the given forms, and that U is one of the components of $\mathrm{X}-\mathrm{C}$.

Let $a=\inf a_{\alpha}$ or $a=-\infty$, according as the set $\left\{a_{\alpha}\right\}$ has a lower bound or not. Let $b=\sup b_{\alpha}$ or $b=+\infty$ according as the set $\left\{b_{\alpha}\right\}$ häs an upper bound or not. Then $U=(a, b)$. If $a \neq-\infty$, we show a is a point of c. Suppose that a is not a point of c. Then there is an open interval (d, e) about a disjoint from C. This open interval contains a_{α} for some α because $a=\inf a_{\alpha}$; then the union ($\left.\alpha, e\right) \cup\left(a_{\alpha}, b_{\alpha}\right)$ is an open interval that contains x and lies in $X-C$. This contradicts the definition of a.

Similarly, if b is not $+\infty$, then b must be a point of c. We conclude that U is of one of the specified forms. [The form $(-\infty,+\infty)$ is not possible, since C is nonempty.]

It now follows that, because the end points of U are $\pm \infty$ or in C, no larger subset of $X-C$ can be connected. Trius U must be the component of $X-C$ trat contains X.

Step 2. Let A arid B bet disjoint closed sets in X. For each component W of $X-A \cup B$ tliat is an open interval with one end point in A. and the other in $B_{\text {r }}$ choose a point d_{W} in W. Let D be the set of all the points d_{W}. We: show that D is closed and discrete.

We show that if x is a limit point of D, then x lies in both A and B (which is not possible). It follows that D has no iimit points. We suppose that x is not in A , ard show that x is not a limit point of D. Let I be an open interval about x that is disjoint from A; we sk:ow that I contains at most two points of D. If I contains the point d_{W} of D, then I intersects the corresponding set W, which has one of the forms $W=(a, b)$ or $W=(b, a)$, where $a \in A$ ard $b \in B$. Because I is disjoint from A, it can intersect at most one set of the form $W=(a, b)$ ard at most one set of the form $W=(b, a)$.

Step 3. Leet V be a component of $X-D$. We show that V cannot intersect both A and B.

Suppose V contains a point a of A and a point b of B; assume for convenience that $\mathrm{a}<\mathrm{b}$. Being connected, V mist contain the interval $[a, b]$. Let $a_{0} b \in$ the supremum of the set $A \cap[a, b]$. Then a_{0} lies in A and $a_{0}<b_{\text {. The set }}\left(a_{0}, b\right]$ does not intersect A. Let b_{C} be the infemum of the set $B \cap\left[a_{0}, b\right]$. Then b_{0} lies in B and $b_{0}>a_{0}$. The interval (a_{0}, b_{0}) contains no point of $A \cup B ;$ because its end points lie in $A \cup B, n c$ larger subset of $X-A \cup B$ can be connected. Hence (a_{0}, b_{0}) is one of the components of $X-A \cup B$; as such, it contains a point of D. Hence V contains a point of D, contrary to construction.

Step 4. By Step 1, the components of $X-D$ are open sets of X. Let U_{A} be the union of all components of $X-D$ that intersect A, and let U_{B} be the union of all components of $X-D$ that intersect B. Fhen U_{A} ard U_{B} are disjoint open sets containing A ard B, respectively. \square

